Acta Diabetologica

, Volume 48, Issue 3, pp 173–181 | Cite as

The diabetic cardiomyopathy

  • Roberto Tarquini
  • Chiara Lazzeri
  • Laura Pala
  • Carlo Maria Rotella
  • Gian Franco Gensini
Review Article


Diabetic cardiomyopathy has been defined as “a distinct entity characterized by the presence of abnormal myocardial performance or structure in the absence of epicardial coronary artery disease, hypertension, and significant valvular disease”. The diagnosis stems from the detection of myocardial abnormalities and the exclusion of other contributory causes of cardiomyopathy. It rests on non-invasive imaging techniques which can demonstrate myocardial dysfunction across the spectra of clinical presentation. The presence of diabetes is associated with an increased risk of developing heart failure, and the 75% of patients with unexplained idiopathic dilated cardiomyopathy were found to be diabetic. Diabetic patients with microvascular complications show the strongest association between diabetes and cardiomyopathy, an association that parallels the duration and severity of hyperglycemia. Metabolic abnormalities (that is hyperglycemia, hyperinsulinemia, and hyperlipemia) can lead to the cellular alterations characterizing diabetic cardiomyopathy (that is myocardial fibrosis and/or myocardial hypertrophy) directly or indirectly (that is by means of renin-angiotensin system activation, cardiac autonomic neuropathy, alterations in calcium homeostasis). Moreover, metabolic abnormalities represent, on a clinical ground, the main therapeutic target in the patients with diabetes since the diagnosis of diabetes is made. Since diabetic cardiomyopathy is highly prevalent in the asymptomatic type 2 diabetic patients, screening for its presence at the earliest stage of development can lead to prevent the progression to chronic heart failure. The most sensitive test is standard echocardiogram, while a less expensive pre-screening method is the detection of microalbuminuria.


Diabetic cardiomyopathy Pathophysiology Prognosis 


  1. 1.
    Aneja A, Tang WH, Bansilal S, Garcia MJ, Farkouh ME (2008) Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 121(9):748–757PubMedCrossRefGoogle Scholar
  2. 2.
    Fang ZY, Prins JB, Marwick TH (2004) Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 25(4):543–567PubMedCrossRefGoogle Scholar
  3. 3.
    Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30(6):595–602PubMedCrossRefGoogle Scholar
  4. 4.
    Regan TJ, Lyons MM, Ahmed SS, Levinson GE, Oldewurtel HA, Ahmad MR, Haider B (1977) Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest 60(4):884–899PubMedCrossRefGoogle Scholar
  5. 5.
    Nichols GA, Hillier TA, Erbey JR, Brown JB (2001) Congestive heart failure in type 2 diabetes: prevalence, incidence, and risk factors. Diabetes Care 24(9):1614–1619PubMedCrossRefGoogle Scholar
  6. 6.
    Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease. The Framingham study. JAMA 241(19):2035–2038PubMedCrossRefGoogle Scholar
  7. 7.
    Hunt SA, American College of Cardiology; American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation, Management of Heart Failure) (2005) ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure). JACC 46(6):e1–e82PubMedGoogle Scholar
  8. 8.
    Stratton IM, Adler AI, Neil HA, Yudkin JS, Matthews DR, Cull CA et al (2000) Association of glycemia with macrovascular and microvascular complications of type 2 diabetes (United Kingdom Prospective Diabetes Study 35): prospective observational study. BMJ 321:405–412PubMedCrossRefGoogle Scholar
  9. 9.
    Bertoni AG, Tsai A, Kasper EK, Brancati FL (2003) Diabetes and idiopathic cardiomyopathy: a nationwide case-control study. Diabetes Care 26(10):2791–2795PubMedCrossRefGoogle Scholar
  10. 10.
    Bertoni AG, Hundley WG, Massing MW, Bonds DE, Burke GL, Goff DC Jr (2004) Heart failure prevalence, incidence, and mortality in the elderly with diabetes. Diabetes Care 27:699–703PubMedCrossRefGoogle Scholar
  11. 11.
    Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease: the Framingham study. JAMA 241:2035–2038PubMedCrossRefGoogle Scholar
  12. 12.
    Poornima IG, Parikh P, Shannon RP (2006) Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 98(5):596–605PubMedCrossRefGoogle Scholar
  13. 13.
    Liu GX, Hanley PJ, Ray J, Daut J (2001) Long-chain acyl-coenzyme A esters and fatty acids directly link metabolism to K (ATP) channels in the heart. Circ Res 88(9):918–924PubMedCrossRefGoogle Scholar
  14. 14.
    Boudina S, Abel ED (2006) Mitochondrial uncoupling: a key contributor to reduced cardiac efficiency in diabetes. Physiology 21:250–258PubMedCrossRefGoogle Scholar
  15. 15.
    McGavock JM, Lingvay I, Zib I, Tillery T, Salas N, Unger R et al (2007) Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation 116:1170–1175PubMedCrossRefGoogle Scholar
  16. 16.
    Rijzewijk LJ, van der Meer RW, Smit JW, Diamant M, Bax JJ, Hammer S et al (2008) Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus. Am Coll Cardiol 52(22):1793–1799CrossRefGoogle Scholar
  17. 17.
    Herrero P, Peterson LR, McGill JB, Matthew S, Lesniak D, Dence C et al (2006) Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus. J Am Coll Cardiol 47:598–604PubMedCrossRefGoogle Scholar
  18. 18.
    Peterson LR, Herrero P, Schechtman KB, Racette SB, Waggoner AD, Kisrieva-Ware Z et al (2004) Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation 109:2191–2196PubMedCrossRefGoogle Scholar
  19. 19.
    O’Neill BT, Abel ED (2005) Akt1 in the cardiovascular system: friend or foe? J Clin Invest 115:2059–2064PubMedCrossRefGoogle Scholar
  20. 20.
    Kern W, Peters A, Born J, Fehm HL, Schultes B (2005) Changes in blood pressure and plasma catecholamine levels during prolonged hyperinsulinemia. Metabolism 54:391–396PubMedCrossRefGoogle Scholar
  21. 21.
    Naito Z, Takashi E, Xu G, Ishiwata T, Teduka K, Yokoyama M et al (2003) Different influences of hyperglycemic duration on phosphorylated extracellular signal-regulated kinase 1/2 in rat heart. Exp Mol Pathol 74:23–32PubMedCrossRefGoogle Scholar
  22. 22.
    Du X, Matsumura T, Edelstein D, Rossetti L, Zsengeller Z, Szabo C, Brownlee M (2003) Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 112:1049–1057PubMedGoogle Scholar
  23. 23.
    Kilhovd BK, Berg TJ, Birkeland KI, Thorsby P, Hanssen KF (1999) Serum levels of advanced glycation end products are increased in patients with type 2 diabetes and coronary heart disease. Diabetes Care 22(9):1543–1548PubMedCrossRefGoogle Scholar
  24. 24.
    Antonio Ceriello, Michael A. Ihnat, Jessica E (2009) Thorpe. The “metabolic memory”: is more than just tight glucose control necessary to prevent diabetic complications?. J Clin Endocrinol Metab 410–415Google Scholar
  25. 25.
    Mannucci E, Ognibene A, Cremasco F, Bardini G, Mencucci A, Pierazzuoli E, Ciani S, Fanelli A, Messeri G, Rotella CM (2000) Glucagon-like peptide (GLP)-1 and leptin concentrations in obese patients with Type 2 diabetes mellitus. Diabet Med 713–719Google Scholar
  26. 26.
    Mannucci E, Pala L, Ciani S, Bardini G, Pezzatini A, Sposato I, Cremasco F, Ognibene A, Rotella CM (2005) Hyperglycaemia increases dipeptidyl peptidase IV activity in diabetes mellitus. Diabetologia 48(6):1168–1172PubMedCrossRefGoogle Scholar
  27. 27.
    Rotella CM, Mannucci E (2008) Future perspectives on glucagon-like peptide-1, diabetes and cardiovascular risk. Nutr Metab Cardiovasc Dis 18:639–645PubMedCrossRefGoogle Scholar
  28. 28.
    Barragan JM, Rodriguez RE, Blazquez E (1994) Changes in arterial blood pressure and heart rate induced by glucagon-like peptide-1 (7–36) amide in rats. Am J Physiol 266:E459e66Google Scholar
  29. 29.
    Yamamoto H, Lee CE, Marcus JN, Williams TD, Overton JM, Lopez ME et al (2002) Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. J Clin Invest 110:43e52Google Scholar
  30. 30.
    Saraceni C, Broderick TL (2007) Effects of glucagon-like peptide-1 and long-acting analogues on cardiovascular and metabolic function. Drugs R D 8:145–153PubMedCrossRefGoogle Scholar
  31. 31.
    Bojanowska E, Stempniak B (2009) Effects of centrally or systematically injected glucagon-like peptide-1(7–36) amide in rats. Regul Pept 91:75–81CrossRefGoogle Scholar
  32. 32.
    Gardiner SM, March JE, Kemp PA, Bennett T (2006) Mesenteric vasoconstriction and hindquarters vasodilation accompany the pressor actions of exendin-4 in conscious rats. J Pharmacol Exp Ther 316:852–859PubMedCrossRefGoogle Scholar
  33. 33.
    Amori RE, Lau J, Pittas AG (2007) Efficacy and safety of incretin therapy in type 2 diabetes. Systematic review and metaanalysis. JAMA 298:194–206PubMedCrossRefGoogle Scholar
  34. 34.
    Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 318:1696–1705CrossRefGoogle Scholar
  35. 35.
    Inzucchi SE, McGuire DK (2008) New drugs for the treatment of diabetes. Part II: incretin-based therapy and beyond. Circulation 117:574–584PubMedCrossRefGoogle Scholar
  36. 36.
    Vilsbøll T (2007) Liraglutide: a once-daily GLP-1 analogue for the treatment of type 2 diabetes mellitus. Exp Opin Invest Drug 16:231–237CrossRefGoogle Scholar
  37. 37.
    Nikolaidis LA, Elahi D, Shen YT, Shannon RP (2005) Active metabolite of GLP-1 mediates myocardial glucose uptake and improved left ventricular performance in conscious dogs with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 289:H2401–H2408PubMedCrossRefGoogle Scholar
  38. 38.
    Sonne DP, Engstrom T, Treiman M (2008) Protective effects of GLP-1 analogues exendin 4 and GLP-1(9–36)amide against ischemia reperfusion in rat heart. Regul Pept 146:243–249PubMedCrossRefGoogle Scholar
  39. 39.
    Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M (2008) Cardioprotective and vasodilatory actions of glucagon-like peptide-1 are mediated through both glucagon like peptide-1 receptor-dependent and independent pathways. Circulation 117:2340–2350PubMedCrossRefGoogle Scholar
  40. 40.
    Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP (2006) Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail 12:694–699PubMedCrossRefGoogle Scholar
  41. 41.
    Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shah A, Elahi D et al (2004) Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 109:962–965PubMedCrossRefGoogle Scholar
  42. 42.
    Young ME, Guthrie PH, Razeghi P, Leighton B, Abbasi S, Patil S et al (2002) Impaired long-chain fatty acid oxidation and contractile dysfunction in the obese Zucker rat heart. Diabetes 51:2587–2595PubMedCrossRefGoogle Scholar
  43. 43.
    Huisamen B, van Zyl M, Keyser A, Lochner A (2001) The effects of insulin and beta-adrenergic stimulation on glucose transport, glut 4 and PKB activation in the myocardium of lean and obese noninsulin dependent diabetes mellitus rats. Mol Cell Biochem 223:15–25PubMedCrossRefGoogle Scholar
  44. 44.
    Chatham JC, Seymour AM (2002) Cardiac carbohydrate metabolism in Zucker diabetic fatty rats. Cardiovasc Res 55:104–112PubMedCrossRefGoogle Scholar
  45. 45.
    Wang P, Lloyd SG, Zeng H, Bonen A, Chatham JC (2005) Impact of altered substrate utilization on cardiac function in isolated hearts from Zucker diabetic fatty rats. Am J Physiol Heart Circ Physiol 288:H2102–H2110PubMedCrossRefGoogle Scholar
  46. 46.
    Bell DSH (2003) Diabetic cardiomyopathy. Diabetes Care 26:249–2951CrossRefGoogle Scholar
  47. 47.
    Struthers AD, Morris AD (2002) Screening for and treating left-ventricular abnormalities in diabetes mellitus: a new way of reducing cardiac deaths. Lancet 359:1430–1432PubMedCrossRefGoogle Scholar
  48. 48.
    Devereux RB, Roman MJ, Paranicas M, O’Grady MJ, Lee ET, Welty TK et al (2000) Impact of diabetes on cardiac structure and function: the Strong Heart Study. Circulation 101:2271–2276PubMedGoogle Scholar
  49. 49.
    Vered A, Battler A, Segal P, Liberman D, Yerashami Y, Berezin M et al (1984) Exercise-induced left ventricular dysfunction in young men with asymptomatic diabetes mellitus (diabetic cardiomyopathy). Am J Cardiol 54(6):633–637PubMedCrossRefGoogle Scholar
  50. 50.
    Carugo S, Giannattasio C, Calchera I, Paleari F, Gorgoglione MG, Grappiolo A, Gamba P, Rovaris G, Failla M, Mancia G (2001) Progression of functional and structural cardiac alterations in young normotensive uncomplicated patients with type 1 diabetes mellitus. J Hypertens 19:1675–1680PubMedCrossRefGoogle Scholar
  51. 51.
    Schannwell CM, Schneppenheim M, Perings S, Plehn G, Strauer BE (2002) Left ventricular diastolic dysfunction as an early manifestation of diabetic cardiomyopathy. Cardiology 98:33–39PubMedCrossRefGoogle Scholar
  52. 52.
    Di Bonito P, Cuomo S, Moio N, Sibilio G, Sabatini D, Quattrin S, Capaldo B (1996) Diastolic dysfunction in patients with non-insulin-dependent diabetes mellitus of short duration. Diabet Med 13:321–324PubMedCrossRefGoogle Scholar
  53. 53.
    Von Bibra H, Thrainsdottir IS, Hansen A, Dounis V, Malmberg K, Rydén L (2005) Tissue Doppler imaging for the detection and quantitation of myocardial dysfunction in patients with type 2 diabetes mellitus. Diab Vasc Dis Res 2(1):24–30CrossRefGoogle Scholar
  54. 54.
    Stefanidis A, Bousboulas S, Kafatis J, Baroutsi K, Margos P, Komninos K et al (2009) Left ventricular anatomical and functional changes with ageing in type 2 diabetic adults. Eur J Echocardiogr 10(5):647–653PubMedCrossRefGoogle Scholar
  55. 55.
    Jarnert C, Landstedt-Hallin L, Malmberg K, Melcher A, Ohrvik J, Persson H et al (2009) A randomized trial of the impact of strict glycaemic control on myocardial diastolic function and perfusion reserve: a report from the DADD (Diabetes mellitus and Diastolic Dysfunction) study. Eur J Heart Fail 11(1):39–47PubMedCrossRefGoogle Scholar
  56. 56.
    von Bibra H, Hansen A, Dounis V, Bystedt T, Malmberg K, Rydén L (2004) Augmented metabolic control improves myocardial diastolic function and perfusion in patients with non-insulin dependent diabetes. Heart 90(12):1483–1484CrossRefGoogle Scholar
  57. 57.
    Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM (2005) Glucagon like peptide-1 can directly protect the heart against ischemia/reperfusion injury. Diabetes 54:146–151PubMedCrossRefGoogle Scholar
  58. 58.
    Zhao T, Parikh P, Bhashyam S, Bolokoglu H, Poornima I, Shen YT et al (2006) Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and post-ischemic isolated rat hearts. J Pharmacol Exp Ther 317:1106–1113PubMedCrossRefGoogle Scholar
  59. 59.
    Debono M, Cachia E (2007) The impact of cardiovascular autonomic neuropathy in diabetes: is it associated with left ventricular dysfunction? Auton Neurosci 132(1–2):1–7PubMedCrossRefGoogle Scholar
  60. 60.
    Rathmann W, Ziegler D, Jahnke M, Haastert B, Gries FA (1993) Mortality in diabetic patients with cardiovascular autonomic neuropathy. Diabet Med 10(9):820–824PubMedCrossRefGoogle Scholar
  61. 61.
    Di Carli MF, Bianco-Batlles D, Landa ME, Kazmers A, Groehn H, Muzik O et al (1999) Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation 100(8):813–819PubMedGoogle Scholar
  62. 62.
    Scognamiglio R, Avogaro A, Casara D, Crepaldi C, Marin M, Palisi M et al (1998) Myocardial dysfunction and adrenergic cardiac innervation in patients with insulin-dependent diabetes mellitus. J Am Coll Cardiol 31:404–412PubMedCrossRefGoogle Scholar
  63. 63.
    Chottová Dvoráková M, Kuncová J, Pfeil U, McGregor GP, Svíglerová J, Slavíková J et al (1995) Cardiomyopathy in stroptozocin-induced diabetes involves intra-axonal accumulation of calcitonin gene-related peptide and altered expression of its receptor in rats. Neuroscience 134:51–58CrossRefGoogle Scholar
  64. 64.
    Cai L, Wang Y, Zhou G, Chen T, Song Y, Li X, Kang YJ (2006) Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. J Am Coll Cardiol 48:1688–1697PubMedCrossRefGoogle Scholar
  65. 65.
    Liang Q, Carlson EC, Donthi RV, Kralik PM, Shen X, Epstein PN (2002) Overexpression of metallothionein reduces diabetic cardiomyopathy. Diabetes 51:174–181PubMedCrossRefGoogle Scholar
  66. 66.
    Matsushima S, Kinugawa S, Ide T, Matsusaka H, Inoue N, Ohta Y et al (2006) Overexpression of glutathione peroxidase attenuates myocardial remodeling and preserves diastolic function in diabetic heart. Am J Physiol Heart Circ Physiol 291:H2237–H2245PubMedCrossRefGoogle Scholar
  67. 67.
    Shen X, Zheng S, Metreveli NS, Epstein PN (2006) Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes 55:798–805PubMedCrossRefGoogle Scholar
  68. 68.
    Westermann D, Walther T, Savvatis K, Sobirey M, Riad A, Bader M et al (2009) Gene deletion of the kinin receptor B1 attenuates cardiac inflammation and fibrosis during the development of experimental diabetic cardiomyopathy. Diabetes 58(6):1373–1381PubMedCrossRefGoogle Scholar
  69. 69.
    Cesario DA, Brar R, Shivkumar K (2006) Alterations in ion channel physiology in diabetic cardiomyopathy. Endocrinol Metab Clin North Am 35:601–610 ix–xPubMedCrossRefGoogle Scholar
  70. 70.
    Zhao XY, Hu SJ, Li J, Mou Y, Chen BP, Xia Q (2006) Decreased cardiac sarcoplasmic reticulum Ca2#-ATPase activity contributes to cardiac dysfunction in streptozotocin-induced diabetic rats. J Physiol Biochem 62:1–8PubMedCrossRefGoogle Scholar
  71. 71.
    Lopaschuk GD, Tahiliani AG, Vadlamudi RV, Katz S, McNeill JH (1983) Cardiac sarcoplasmic reticulum function in insulin- or carnitine-treated diabetic rats. Am J Physiol Heart Circ Physiol 245:H969–H976Google Scholar
  72. 72.
    Jweied EE, McKinney RD, Walker LA, Brodsky I, Geha AS, Massad MG et al (2005) Depressed cardiac myofilament function in human diabetes mellitus. Am J Physiol Heart Circ Physiol 289:H2478–H2483PubMedCrossRefGoogle Scholar
  73. 73.
    Khatter JC, Sadri P, Zhang M, Hoeschen RJ (1996) Myocardial angiotensin II (Ang II) receptors in diabetic rats. Ann N York Acad Sci 793:466–472CrossRefGoogle Scholar
  74. 74.
    Liu X, Suzuki H, Sethi R, Tappia PS, Takeda N, Dhalla NS (2006) Blockade of the renin-angiotensin system attenuates sarcolemma and sarcoplasmic reticulum remodeling in chronic diabetes. Ann N Y Acad Sci 1084:141–154PubMedCrossRefGoogle Scholar
  75. 75.
    Yaras N, Bilginoglu A, Vassort G, Turan B (2007) Restoration of diabetes-induced abnormal local Ca2# release in cardiomyocytes by angiotensin II receptor blockade. Am J Physiol Heart Circ Physiol 292:H912–H920PubMedCrossRefGoogle Scholar
  76. 76.
    Fiordaliso F, Cuccovillo I, Bianchi R, Bai A, Doni M, Salio M et al (2006) Cardiovascular oxidative stress is reduced by an ACE inhibitor in a rat model of streptozotocin-induced diabetes. Life Sci 79:121–129PubMedCrossRefGoogle Scholar
  77. 77.
    Eaton JW, Qian M (2002) Interactions of copper with glycated proteins: possible involvement in the etiology of diabetic neuropathy. Mol Cell Biochem 234(235):135–142PubMedCrossRefGoogle Scholar
  78. 78.
    Rota M, LeCapitaine N, Hosoda T, Boni A, De Angelis A, Padin-Iruegas ME et al (2006) Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene. Circ Res 99:44–52CrossRefGoogle Scholar
  79. 79.
    Dhallas NS, Liu X, Panagia V, Takeda N (1998) Subcellular remodeling and heart dysfunction in chronic diabetes. Cardiovasc Res 40(2):239–247CrossRefGoogle Scholar
  80. 80.
    Liu JE, Robbins C, Palmieri V, Bella JN, Roman MJ, Fabsitz R et al (2003) Association of albuminuria with systolic and diastolic left ventricular dysfunction in type 2 diabetes: the Strong Heart Study. J Am Coll Cardiol 41(11):2022–2028PubMedCrossRefGoogle Scholar
  81. 81.
    Paulus WJ, Tschöpe C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE et al (2007) How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 28(20):2539–2550PubMedCrossRefGoogle Scholar
  82. 82.
    Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ et al (2003) Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-preserved trial. Lancet 362(9386):777–778PubMedCrossRefGoogle Scholar
  83. 83.
    Tribouilloy C, Rusinaru D, Mahjoub H, Tartière JM, Kesri-Tartière L, Godard S et al (2008) Prognostic impact of diabetes mellitus in patients with heart failure and preserved ejection fraction: a prospective 5-year study. Heart 94(11):1450–1455PubMedCrossRefGoogle Scholar
  84. 84.
    Melenovsky V, Borlaug BA, Rosen B, Hay I, Ferruci L, Morell CH et al (2007) Cardiovascular features of heart failure with preserved ejection fraction versus non failing hypertensive left ventricular hypertrophy in the urban Baltimore community: the role of atrial remodeling/dysfunction. J Am Coll Cardiol 49(2):198–207PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Roberto Tarquini
    • 1
  • Chiara Lazzeri
    • 2
  • Laura Pala
    • 3
  • Carlo Maria Rotella
    • 3
  • Gian Franco Gensini
    • 2
  1. 1.Department of Internal MedicineAzienda Ospedaliero-Universitaria Careggi, University of FlorenceFlorenceItaly
  2. 2.Heart and Vessel DepartmentAzienda Ospedaliero-Universitaria Careggi, University of FlorenceFlorenceItaly
  3. 3.Section of Metabolic Diseases and Diabetes, Department of Clinical PathophisiologyAzienda Ospedaliero-Universitaria Careggi, University of FlorenceFlorenceItaly

Personalised recommendations