Advertisement

Mathematische Semesterberichte

, Volume 64, Issue 1, pp 25–39 | Cite as

The general non-symmetric, unbalanced star circuit

On the geometrization of problems in electrical measurement
  • Christian Eggert
  • Ralf Gäer
  • Frank Klinker
Mathematik in Forschung und Anwendung

Abstract

We provide the general solution of problems concerning AC star circuits by turning them into geometric problems. We show that one problem is strongly related to the Fermat-point of a triangle. We present a solution that is well adapted to the practical application the problem is based on. Furthermore, we solve a generalization of the geometric situation and discuss the relation to non-symmetric, unbalanced AC star circuits.

Keywords

Geometry Star circuits Electrical measurement 

Notes

Acknowledgements

We would like to thank Christoph Reineke for his support in the formulation of some technical details. Moreover, we would like to thank the anonymous referees. Their remarks helped us to emphasize the main focus of our arguments.

References

  1. 1.
    Agricola, I., Friedrich, T.: Elementargeometrie, 3rd edn. Vieweg+Teubner Verlag, Wiesbaden (2011)CrossRefMATHGoogle Scholar
  2. 2.
    Alley, R.E., Smith, K.C.A.: Electrical Circuits – An Introduction. Cambridge University Press, Cambridge (1992). Electronics Texts for Engineers and ScientistsGoogle Scholar
  3. 3.
    Andreescu, T., Mushkarov, O., Stoyanov, L.: Geometric Problems on Maxima and Minima. Birkhäuser, Boston (2006)MATHGoogle Scholar
  4. 4.
    Boltyanski, V., Martini, H., Soltan, V.: Geometric Methods and Optimization Problems. Springer Science+Business Media, Dordrecht (1999)CrossRefMATHGoogle Scholar
  5. 5.
    Brookes, A.M.P.: Advanced Electric Circuits. Pergamon Press Ltd., Oxford (1966)Google Scholar
  6. 6.
    Edminister, J.A., Nahvi, M.: Electric Circuits, 6th edn. McGraw-Hill Education Ltd., Columbus, OH (2014)Google Scholar
  7. 7.
    Eriksson, F.: The Fermat-Torricelli Problem Once More. Math Gazette 490(81), 37–44 (1997)CrossRefMATHGoogle Scholar
  8. 8.
    Gueron, S., Tessler, R.: The Fermat-Steiner Problem. Amer Math Mon 5(109), 443–451 (2002)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hassell, C., Rees, E.: The index of a constrained critical point. Amer Math Mon 8(100), 772–778 (1993)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Heuser, H.: Lehrbuch der Analysis, Teil 2, 13th edn. B. G. Teubner Verlag, Wiesbaden (2004)CrossRefMATHGoogle Scholar
  11. 11.
    Hofmann, J.E.: Über die geometrische Behandlung einer Fermatschen Extremwert-Aufgabe durch Italiener des 17. Jahrhunderts. Sudhoffs Arch 53, 86–99 (1969)Google Scholar
  12. 12.
    Lorenz, F.: Lineare Algebra I, 4th edn. Spektrum Akademischer Verlag, Heidelberg, Berlin, Oxford (2008)MATHGoogle Scholar
  13. 13.
    Lorenz, F.: Lineare Algebra II, 3rd edn. Spektrum Akademischer Verlag, Heidelberg, Berlin, Oxford (2009)MATHGoogle Scholar
  14. 14.
    Rathore, T.S., Rathore, J.: Analysis of typical 3‑phase star-connected circuit: A phasor diagram approach. In: 2014 International Conference on Circuits, Systems, Communication and Information Technology Applications (CSCITA), pp. 36–41. Institute of Electrical and Electronics Engineers (IEEE), Curran Associates Inc., Red Hook, NY (2014)MATHGoogle Scholar
  15. 15.
    Torricelli, E.: De Maximis et Minimis. In: Loria, G., Vassura, G. (eds.) Opere di Evangelista Torricelli. Faenza, Italy (1919)Google Scholar
  16. 16.
    Wikipedia, the free encyclopedia: Fermat Point. http://en.wikipedia.org/wiki/Fermat_point, Accessed July 2016Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.ThyssenKrupp Rothe Erde GmbHDortmundGermany
  2. 2.Schniewindt GmbH & Co. KGNeuenradeGermany
  3. 3.Faculty of MathematicsTU Dortmund UniversityDortmundGermany

Personalised recommendations