Advertisement

Mathematische Semesterberichte

, Volume 60, Issue 1, pp 1–24 | Cite as

Mathematical models as artefacts for research: Felix Klein and the case of Kummer surfaces

  • David E. Rowe
Mathematische Bildergalerie

Abstract

Already as a student in Bonn, Felix Klein was exposed to model-making through his teacher, Julius Plücker, who used models to visualize the properties of special surfaces that arise in line geometry. Afterward, Klein attended Kummer’s seminar in Berlin, where he began to explore the connections between general Kummer surfaces and so-called complex surfaces, first studied by Plücker. In the late 1870s, Klein and Alexander Brill supervised the work of several students at the Munich Technische Hochschule who designed a large collection of models there. There followed a new era in model production, based in Munich but marketed through the Darmstadt firm owned by Brill’s brother. By 1900 the plaster models of L. Brill could be found at leading universities around the world. Our story here centres on Kummer’s famous models, which began as research artefacts in Berlin, before passing to Munich and then proliferating to points beyond.

Keywords

Singular Point Plaster Model Kummer Surface Line Geometry Quartic Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Biermann, K.R.: Die Mathematik und ihre Dozenten an der Berliner Universität 1810–1933 – Stationen auf dem Wege eines mathematischen Zentrums von Weltgeltung. Akademie-Verlag, Berlin (1988) zbMATHGoogle Scholar
  2. 2.
    Brill, A.: Über die Modellsammlung des mathematischen Seminars der Universität Tübingen, Druckfassung eines Vortrages vom 7.11.1887. In: Mathematisch-Naturwissenschaftliche Mitteilungen, Tübingen, vol. II, pp. 69–80 (1889) Google Scholar
  3. 3.
    Cayley, A.: On Plücker’s models of certain quartic surfaces. Proc. Lond. Math. Soc. 3, 281–285 (1871) zbMATHCrossRefGoogle Scholar
  4. 4.
    Clebsch, A.: Zum Gedächtnis an Julius Plücker. Abh. K. Ges. Wiss. Göttin. 16, 1–40 (1871) Google Scholar
  5. 5.
    Dolgachev, I.: Luigi Cremona and cubic surfaces. arXiv:math/0408283 [math.AG] (2004)
  6. 6.
    Engel, F.: Sophus Lie. Jahresber. Dtsch. Math.-Ver. 8, 30–46 (1900) Google Scholar
  7. 7.
    Finsterwalder, S.: Alexander v. Brill: Ein Lebensbild. Math. Ann. 112, 653–663 (1936) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Fischer, G. (ed.): Mathematische Modelle, 2 vols. Akademie Verlag, Berlin (1986) Google Scholar
  9. 9.
    Hankins, T.: Sir William Rowan Hamilton. Johns Hopkins University Press, Baltimore (1980) zbMATHGoogle Scholar
  10. 10.
    Hudson, R.W.H.T.: Kummer’s Quartic Surface. University Press, Cambridge (1905). Reprinted in Cambridge: Cambridge University Press (1990) zbMATHGoogle Scholar
  11. 11.
    Knörrer, H.: Die Fresnelsche Wellenfläche. In Arithmetik und Geometrie, Mathematische Miniaturen, vol. 3, pp. 115–141. Birkhäuser, Basel (1986) Google Scholar
  12. 12.
    Klein, F.: Gesammelte Mathematische Abhandlungen, vol. 1. Springer, Berlin (1921) CrossRefGoogle Scholar
  13. 13.
    Klein, F.: Gesammelte Mathematische Abhandlungen, vol. 2. Springer, Berlin (1922) Google Scholar
  14. 14.
    Klein, F.: Göttinger Professoren (Lebensbilder von eigener Hand): Felix Klein. Mitt. Universitätsbundes Göttin. 5, 11–36 (1923) Google Scholar
  15. 15.
    Kummer, E.E.: Ernst Eduard Kummer, Collected Papers, vol. 2, Weil, A. (ed.). Springer, Berlin (1975) Google Scholar
  16. 16.
    Müller, F.: Purifying objects, breeding tools: observational and experimental strategies in nineteenth-century gas discharge research. Max-Planck-Institut für Wissenschaftsgeschichte. Preprint 318 (2006) Google Scholar
  17. 17.
    Rohn, C.: Drei Modelle der Kummer’schen Fläche, Mathematische Modelle angefertigt im mathematischen Institut des k. Polytechnikums zu München (1877). Wiederabgedruckt in [19] Google Scholar
  18. 18.
    Rowe, D.E.: Klein, Lie, and the geometric background of the Erlangen Program. In: Rowe, D.E., McCleary, J. (eds.) The History of Modern Mathematics: Ideas and Their Reception, vol. 1, pp. 209–273. Academic Press, Boston (1989) Google Scholar
  19. 19.
    Schilling, M. (ed.): Mathematische Abhandlungen aus dem Verlage Mathematischer Modelle von Martin Schilling. M. Schilling, Halle (1904) Google Scholar
  20. 20.
    Schilling, M. (ed.): Katalog mathematischer Modelle für den höheren mathematischen Unterricht. M. Schilling, Leipzig (1911) zbMATHGoogle Scholar
  21. 21.
    Shafarevich, I.: Zum 150. Geburtstag von Alfred Clebsch. Math. Ann. 266, 135–140 (1983) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Tobies, R.: Felix Klein in Erlangen und München. In: Amphora. Festschrift für Hans Wussing zu seinem 65. Geburtstag, pp. 751–772. Birkhäuser, Basel (1992) Google Scholar
  23. 23.
    Weierstrass, K.: Mathematische Werke, Bd. 3. Mayer & Müller, Berlin (1903) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für MathematikJohannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations