Advertisement

Mathematische Semesterberichte

, Volume 59, Issue 1, pp 1–28 | Cite as

Mathematische Methoden in der Geothermie

  • M. Augustin
  • W. Freeden
  • C. Gerhards
  • S. Möhringer
  • I. Ostermann
Mathematik in Forschung und Anwendung

Zusammenfassung

Insbesondere bei der industriellen Nutzung tiefer geothermischer Systeme gibt es Risiken, die im Hinblick auf eine zukunftsträchtige Rolle der Ressource „Geothermie“ innerhalb der Energiebranche eingeschätzt und minimiert werden müssen. Zur Förderung und Unterstützung dieses Prozesses kann die Mathematik einen entscheidenden Beitrag leisten. Um dies voranzutreiben haben wir zur Charakterisierung tiefer geothermischer Systeme ein Säulenmodell entwickelt, das die Bereiche Exploration, Bau und Produktion näher beleuchtet. Im Speziellen beinhalten die Säulen: Seismische Erkundung, Gravimetrie/Geomagnetik, Transportprozesse, Spannungsfeld.

Schlüsselwörter

Mathematische Modellierung Tiefengeothermie 

Mathematics Subject Classification (2000)2010@german

35Q86 86A20 86A22 86A60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Altmann, J.B., Dorner, A., Schoenball, M., Müller, B.I.R., Müller, T.M.: Modellierung von porendruckinduzierten Änderungen des Spannungsfeldes in Reservoiren. In: Kongressband, Geothermiekongress 2008, Karlsruhe (2008) Google Scholar
  2. 2.
    Arbogast, T.: Analysis of the simulation of single phase flow through a naturally fractured reservoir. SIAM J. Numer. Anal. 26, 12–29 (1989) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Augustin, M.: Mathematical aspects of stress field simulations in deep geothermal reservoirs. Bericht 50. In: Schriften zur Funktionalanalysis und Geomathematik. TU Kaiserslautern, Kaiserslautern (2011) Google Scholar
  4. 4.
    Baysal, E., Kosloff, D.D., Sherwood, J.W.C.: Reverse time migration. Geophysics 48(11), 1514–1524 (1983) CrossRefGoogle Scholar
  5. 5.
    Bear, J.: Dynamics of Fluids in Porous Media. Amsterdam, Elsevier (1972) MATHGoogle Scholar
  6. 6.
    Berkowitz, B.: Characterizing flow and transport in fractured geological media: a review. Adv. Water Resour. 25, 852–864 (2002) CrossRefGoogle Scholar
  7. 7.
    Biondi, B.L.: Three-Dimensional Seismic Imaging. Society of Exploration Geophysicists, Tulsa (2006) Google Scholar
  8. 8.
    Biot, M.A.: Le Problème de la Consolidation des Matières Argileuses sous une Charge. Ann. Soc. Sci. Brux. B55, 110–113 (1935) Google Scholar
  9. 9.
    Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 151–164 (1941) Google Scholar
  10. 10.
    Biot, M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182–185 (1955) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Blakely, R.J.: Potential Theory in Gravity & Magnetic Application. Cambridge University Press, Cambridge (1996) Google Scholar
  12. 12.
    Blank, L.: Numerical treatment of differential equations of fractional order. NAR Report, 1996 Google Scholar
  13. 13.
    Bleistein, N., Cohen, J.K., Stockwell, J.W.: Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion. Springer, Berlin (2000) Google Scholar
  14. 14.
    Bording, R.P., Liner, C.L.: Theory of 2.5-D reverse time migration. In: Proceedings, 64th Annual International Meeting. Society of Exploration Geophysicists, Tulsa (1994) Google Scholar
  15. 15.
    Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge Monographs on Applied and Computational Mathematics, vol. 12. Cambridge University Press, Cambridge (2003) MATHCrossRefGoogle Scholar
  16. 16.
    Chen, Z., Huan, G., Ma, Y.: Computational methods for multiphase flows in porous media. Computational Science & Engineering, vol. 12. SIAM, Philadelphia (2006) MATHCrossRefGoogle Scholar
  17. 17.
    Claerbout, J.: Basic Earth Imaging. Stanford University, Stanford (2009) Google Scholar
  18. 18.
    de Boer, R.: Theory of Porous Media—Highlights in Historical Development and Current State. Springer, Berlin (2000) MATHGoogle Scholar
  19. 19.
    Deng, F., McMechan, G.A.: 3-D true amplitude prestack depth migration. In: Proceedings, SEG Annual Meeting, San Antonio (2007) Google Scholar
  20. 20.
    Dershowitz, W.S., La Pointe, P.R., Doe, T.W.: Advances in discrete fracture network modeling. In: Proceedings, US EPA/NGWA Fractured Rock Conference, Portland, pp. 882–894 (2004) Google Scholar
  21. 21.
    Dietrich, P., Helmig, R., Sauter, M., Hötzel, H., Köngeter, J., Teutsch, G.: Flow and Transport in Fractured Porous Media. Springer, Berlin (2005) CrossRefGoogle Scholar
  22. 22.
    Eker, E., Akin, S.: Lattice Boltzmann simulation of fluid flow in synthetic fractures. Transp. Porous Media 65, 363–384 (2006) CrossRefGoogle Scholar
  23. 23.
    Ene, H.I., Poliševski, D.: Thermal Flow in Porous Media. Reidel, Dordrecht (1987) CrossRefGoogle Scholar
  24. 24.
    Evans, K.F., Cornet, F.H., Hashida, T., Hayashi, K., Ito, T., Matsuki, K., Wallroth, T.: Stress and rock mechanics issues of relevance to HDR/HWR engineered geothermal systems: review of developments during the past 15 years. Geothermics 28, 455–474 (1999) CrossRefGoogle Scholar
  25. 25.
    Fairweather, G., Karageorghis, A.: The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9, 69–95 (1998) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Fehlinger, T.: Multiscale formulations for the disturbing potential and the deflections of the vertical in locally reflected physical geodesy. Ph.D. thesis, TU Kaiserslautern, Geomathematics Group, Germany (2009) Google Scholar
  27. 27.
    Ford, N.J., Simpson, A.: The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algorithms 26(4), 333–346 (2001) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Freeden, W.: Metaharmonic Lattice Point Theory. CRC Press/Taylor & Francis, Boca Raton/London (2011) MATHGoogle Scholar
  29. 29.
    Freeden, W., Gerhards, C.: Poloidal and toroidal field modeling in terms of locally supported vector wavelets. Math. Geosci. 42, 817–838 (2010) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Freeden, W., Mayer, C., Schreiner, M.: Tree algorithms in wavelet approximations by Helmholtz potential operators. Numer. Funct. Anal. Optim. 24(7 & 8), 747–782 (2003) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Freeden, W., Michel, V.: Multiscale Potential Theory (With Applications to Geoscience). Birkhäuser, Basel (2004) MATHGoogle Scholar
  32. 32.
    Freeden, W., Ostermann, I., Augustin, M.: Mathematik als Schlüsseltechnologie in der Geothermie. Geotherm. Energ. 70, 20–24 (2011) Google Scholar
  33. 33.
    Freeden, W., Schreiner, M.: Local multiscale modelling of geoid undulations from deflections of the vertical. J. Geod. 79, 641–651 (2006) MATHCrossRefGoogle Scholar
  34. 34.
    Freeden, W., Schreiner, M.: Spherical Functions of Mathematical Geosciences: A Scalar, Vectorial, and Tensorial Setup. Springer, Berlin (2009) MATHGoogle Scholar
  35. 35.
    Freeden, W., Wolf, K.: Klassische Erdschwerefeldbestimmung aus der Sicht moderner Geomathematik. Math. Semesterber. 56, 53–77 (2009) MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Gerhards, C.: Spherical decompositions in a global and local framework: theory and an application to geomagnetic modeling. Int. J. Geomath. 1, 205–256 (2011) MathSciNetCrossRefGoogle Scholar
  37. 37.
    Gerhards, C.: Spherical multiscale methods in terms of locally supported wavelets: theory and application to geomagnetic modeling. Ph.D. thesis, TU Kaiserslautern, Geomathematics Group, Germany (2011) Google Scholar
  38. 38.
    Ghassemi, A.: A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development. Final Report, Department of Geology & Geological Engineering, University of North Dakota, (2003) Google Scholar
  39. 39.
    Ghassemi, A., Zhang, Q.: Poro-thermoelastic mechanisms in Wellbore stability and reservoir stimulation. In: Proceedings, 29th Workshop on Geothermal Reservoir Engineering, Stanford University, California, SGP-TR-173 (2004) Google Scholar
  40. 40.
    Golberg, M.A., Chen, C.S.: The method of fundamental solutions for potential, Helmholtz and diffusion problems. In: Golberg, M.A. (ed.) Boundary Integral Methods—Numerical and Mathematical Aspects, chapter 4, pp. 103–176. Computational Mechanics Publications, Southampton (1998) Google Scholar
  41. 41.
    Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 223–276. Springer, Berlin (1997) Google Scholar
  42. 42.
    Haney, M.M., Bartel, L.C., Aldridge, D.F., Symons, N.P.: Insight into the output of reverse-time migration: what do the amplitudes mean? In: Proceedings, SEG Annual Meeting, Houston (2005) Google Scholar
  43. 43.
    Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems. Springer, Berlin (1997) Google Scholar
  44. 44.
    Helmig, R., Niessner, J., Flemisch, B., Wolff, M., Fritz, J.: Efficient modeling of flow and transport in porous media using multi-physics and multi-scale approaches. In: Freeden, W., Nashed, Z., Sonar, T. (eds.) Handbook of Geomathematics, chapter 15, pp. 417–457. Springer, Berlin (2010) CrossRefGoogle Scholar
  45. 45.
    Ilyasov, M.: A tree algorithm for Helmholtz potential wavelets on non-smooth surfaces: theoretical background and application to seismic data postprocessing. Ph.D. thesis, TU Kaiserslautern, Geomathematics Group, Germany (2011) Google Scholar
  46. 46.
    Ilyasov, M., Ostermann, I., Punzi, A.: Modeling deep geothermal reservoirs: recent advances and future problems. In: Freeden, W., Nashed, Z., Sonar, T. (eds.) Handbook of Geomathematics, chapter 22, pp. 679–711. Springer, Berlin (2010) CrossRefGoogle Scholar
  47. 47.
    Jacobs, F., Meyer, H.: Geophysik-Signale aus der Erde. Teubner (1992) Google Scholar
  48. 48.
    Jing, L., Hudson, J.A.: Numerical methods in rock mechanics. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 39, 409–427 (2002) CrossRefGoogle Scholar
  49. 49.
    John, V., Kaya, S., Layton, W.: A two-level variational multiscale method for convection-dominated convection-diffusion equations. Comput. Methods Appl. Mech. Eng. 195, 4594–4603 (2006) MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    John, V., Schmeyer, E.: Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion. Comput. Methods Appl. Mech. Eng. 198, 475–494 (2008) MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Jung, R.: Stand und Aussichten der Tiefengeothermie in Deutschland. Erdöl Erdgas Kohle 123(2), 1–7 (2007) Google Scholar
  52. 52.
    Kim, I., Lindquist, W.B., Durham, W.B.: Fracture flow simulation using a finite-difference lattice Boltzmann method. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 67, 046708 (2003) CrossRefGoogle Scholar
  53. 53.
    Kolditz, O.: Strömung, Stoff- und Wärmetransport im Kluftgestein. Borntraeger (1997) Google Scholar
  54. 54.
    Kühn, M., Bartels, J., Iffland, J.: Predicting reservoir property trends under heat exploitation: interaction between flow, heat transfer, transport, and chemical reactions in a deep aquifer at Stralsund, Germany. Geothermics 31(6), 725–749 (2002) CrossRefGoogle Scholar
  55. 55.
    Lang, U., Helmig, R.: Numerical modeling in fractured media—identification of measured field data. In: Krasny, J., Mls, J. (eds.) Groundwater Quality: Remediation and Protection, pp. 203–212. IAHS and University Karlova, Prague (1995) Google Scholar
  56. 56.
    Lomize, G.M.: Seepage in Fissured Rocks. State Press, Moscow (1951) Google Scholar
  57. 57.
    Luchko, Y.: Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 351(1), 218–223 (2009) MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Luchko, Y.: Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. Comput. Math. Appl. 59(5), 1766–1772 (2010) MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Luchko, Y., Punzi, A.: Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations. Int. J. Geomath. 1, 257–276 (2010) MathSciNetCrossRefGoogle Scholar
  60. 60.
    Martin, G.S., Marfurt, K.J., Larsen, S.: Marmousi-2: an updated model for the investigation of AVO in Structurally Complex Areas. In: Proceedings, SEG Annual Meeting (2002) Google Scholar
  61. 61.
    McLean, W., Mustapha, K.: Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation. Numer. Algorithms 52, 69–88 (2009) MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    Menke, W.: Geophysical Data Analysis: Discrete Inverse Theory. Academic Press, Orlando (1984) Google Scholar
  63. 63.
    Michel, V.: A multiscale approximation for operator equations in separable Hilbert spaces—case Study: Reconstruction and Description of the Earth’s Interior. Habilitation thesis, TU Kaiserslautern, Geomathematics Group, Germany (2002) Google Scholar
  64. 64.
    Michel, V., Wolf, K.: Numerical aspects of a spline-based multiresolution recovery of the harmonic mass density out of gravity functionals. Geophys. J. Int. 173, 1–16 (2008) CrossRefGoogle Scholar
  65. 65.
    Moeck, I., Kwiatek, G., Zimmermann, G.: The in-situ stress field as a key issue for geothermal field development—a case study from the NE German Basin. In: Proceedings, 71st EAGE Conference & Exhibition, Amsterdam (2009) Google Scholar
  66. 66.
    Nakao, S., Ishido, T.: Pressure-transient behavior during cold water injection into geothermal wells. Geothermics 27(4), 401–413 (1998) CrossRefGoogle Scholar
  67. 67.
    Neuman, S., Depner, J.: Use of variable-scale pressure test data to estimate the log hydraulic conductivity covariance and dispersivity of fractured granites near oracle, Arizona. J. Hydrol. 102, 475–501 (1988) CrossRefGoogle Scholar
  68. 68.
    Ostermann, I.: Modeling heat transport in deep geothermal systems by radial basis functions. Ph.D. thesis, TU Kaiserslautern, Geomathematics Group, Germany (2011) Google Scholar
  69. 69.
    Ostermann, I.: Three-dimensional modeling of heat transport in deep hydrothermal reservoirs. Int. J. Geomath. 2, 37–68 (2011) MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    Podvin, P., Lecomte, I.: Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools. Geophys. J. Int. 105, 271–284 (1991) CrossRefGoogle Scholar
  71. 71.
    Pruess, K.: Modelling of geothermal reservoirs: fundamental processes, computer simulation and field applications. Geothermics 19(1), 3–15 (1990) CrossRefGoogle Scholar
  72. 72.
    Pruess, K., Narasimhan, T.N.: A practical method for modeling fluid and heat flow in fractured porous media. Soc. Pet. Eng. J. 25, 14–26 (1985) Google Scholar
  73. 73.
    Pruess, K., Wang, J.S.Y., Tsang, Y.W.: Effective continuum approximation for modeling fluid and heat flow in fractured porous tuff. Sandia National Laboratories report SAND86-7000, Albuquerque, New Mexico (1986) Google Scholar
  74. 74.
    Rivera-Recillas, D.E., Lozada-Zumaeta, M.M., Ronquillo-Jarillo, G., Campos-Enríquez, J.O.: Multiresolution analysis applied to interpretation of seismic reflection data. Geofís. Int. 44(4), 355–368 (2005) Google Scholar
  75. 75.
    Rutqvist, J., Stephansson, O.: The role of hydromechanical coupling in fractured rock engineering. Hydrogeol. J. 11, 7–40 (2003) CrossRefGoogle Scholar
  76. 76.
    Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches. VCH, Weinheim (1995) MATHGoogle Scholar
  77. 77.
    Sanyal, S.: Classification of geothermal systems—a possible scheme. In: Proceedings, 30th Workshop on Geothermal Reservoir Engineering, Stanford University, California, SGP-TR-176, pp. 85–92 (2005) Google Scholar
  78. 78.
    Sanyal, S.K., Butler, S.J., Swenson, D., Hardeman, B.: Review of the state-of-the-art of numerical simulation of enhanced geothermal systems. In: Proceedings, World Geothermal Congress, Kyushu-Tohoku, Japan (2000) Google Scholar
  79. 79.
    Schubert, G., Turcotte, D.L., Olson, P.: Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge (2001) CrossRefGoogle Scholar
  80. 80.
    Schulz, R.: Aufbau eines geothermischen Informationssystems für Deutschland. Endbericht. Leibniz-Institut für Angewandte Geophysik, Hannover (2009) Google Scholar
  81. 81.
    Symes, W.W.: Reverse time migration with optimal checkpointing. Geophysics 72(5), SM213–SM221 (2007) CrossRefGoogle Scholar
  82. 82.
    Turcotte, D.L., Schubert, G.: Geodynamics. Cambridge University Press, Cambridge (2001) Google Scholar
  83. 83.
    Versteeg, R.: The marmousi experience: velocity model determination on a synthetic complex data set. Lead. Edge 13, 927–936 (1994) CrossRefGoogle Scholar
  84. 84.
    Vidale, J.: Finite-difference calculation of travel times. Bull. Seismol. Soc. Am. 78(6), 2062–2076 (1988) Google Scholar
  85. 85.
    Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005) MATHGoogle Scholar
  86. 86.
    Wolf, K.: Multiscale modeling of classical boundary value problems in physical geodesy by locally supported wavelets. Ph.D. thesis, TU Kaiserslautern, Geomathematics Group, Germany (2009) Google Scholar
  87. 87.
    Wu, Y.S.: On the effective continuum method for modeling multiphase flow, multicomponent transport and heat transfer in fractured rock. In: Faybishenko, B., Witherspoon, P.A., Benson, S.M. (eds.) Dynamics of Fluids in Fractured Rocks, Concepts and Recent Advances, pp. 299–312. American Geophysical Union, Washington (2000) CrossRefGoogle Scholar
  88. 88.
    Wu, Y.S., Pruess, K.: A physically based numerical approach for modeling fracture-matrix interaction in fractured reservoirs. In: Proceedings, World Geothermal Congress 2005, Antalya, Turkey (2005) Google Scholar
  89. 89.
    Xie, X.B., Wu, R.S.: A depth migration method based on the full-wave reverse time calculation and local one-way propagation. In: Proceedings, SEG Annual Meeting, New Orleans (2006) Google Scholar
  90. 90.
    Yilmaz, O.: Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data. Society of Exploration Geophysicists (1987) Google Scholar
  91. 91.
    Yin, S.: Geomechanics-reservoir modeling by displacement discontinuity-finite element method. Ph.D. thesis, University of Waterloo, Ontario, Canada (2008) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • M. Augustin
    • 1
  • W. Freeden
    • 1
  • C. Gerhards
    • 1
  • S. Möhringer
    • 2
  • I. Ostermann
    • 2
  1. 1.Arbeitsgruppe GeomathematikTU KaiserslauternKaiserslauternDeutschland
  2. 2.Fraunhofer ITWMKaiserslauternDeutschland

Personalised recommendations