Advertisement

Comparison of magnesium versus titanium screw fixation for biplane chevron medial malleolar osteotomy in the treatment of osteochondral lesions of the talus

  • Baver Acar
  • Ozkan KoseEmail author
  • Melih Unal
  • Adil Turan
  • Yusuf Alper Kati
  • Ferhat Guler
Original Article • ANKLE - BIOMATERIAL
  • 31 Downloads

Abstract

Purpose

This retrospective study aimed to compare the clinical and radiological outcomes of patients who underwent biplane chevron medial malleolar osteotomy (MMO) for osteochondral lesions of the talus (OLT), fixed with either magnesium (Mg) or titanium (Ti) screws.

Methods

A total of 22 patients (12 male and 10 female) with a mean age of 40.6 ± 12.5 years (range 18–56 years) who underwent MMO for OLT treatment were included in this retrospective study. Of the 22 patients, MMO was fixed with bioabsorbable Mg screws (Alloy: MgYREZr) in 11 patients, and in the remaining 11 patients (one bilateral) MMO was fixed with Ti screws. All patients were followed up for at least 1 year with a mean of 20.7 ± 8.9 months (range 12–49 months). The American Orthopedic Foot and Ankle Society (AOFAS) scale and the visual analog scale (VAS) were used to evaluate the clinical results. Union of the osteotomy, postoperative displacement and all other complications were followed and analyzed.

Results

An improvement in the AOFAS scale and VAS points were recorded in both groups with no statistically significant difference between the groups (p 0.079 and 0.107, respectively). Complete union of the osteotomy was obtained in all patients. One patient in the Ti group required implant removal due to pain and irritation. There were no other significant complications in either group.

Conclusions

The results of this study showed that bioabsorbable Mg compression screws have similar therapeutic efficacy to Ti screws in respect of functional and radiological outcomes in MMO fixation. Bioabsorbable Mg screw is an alternative fixation material which can be safely used for MMO in ankle surgery.

Level of evidence

Level IV, retrospective case series.

Keywords

Osteochondral lesions of the talus Magnesium screw Bioabsorbable Medial malleolar osteotomy 

Notes

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. IRB approved the study protocol.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    van Bergen CJ, Kox LS, Maas M, Sierevelt IN, Kerkhoffs GM, van Dijk CN (2013) Arthroscopic treatment of osteochondral defects of the talus: outcomes at eight to twenty years of follow-up. J Bone Jt Surg Am 95(6):519–525CrossRefGoogle Scholar
  2. 2.
    Choi WJ, Park KK, Kim BS, Lee JW (2009) Osteochondral lesion of the talus: is there a critical defect size for poor outcome? Am J Sports Med 37(10):1974–1980CrossRefPubMedGoogle Scholar
  3. 3.
    Navid DO, Myerson MS (2002) Approach alternatives for treatment of osteochondral lesions of the talus. Foot Ankle Clin 7(3):635–649CrossRefPubMedGoogle Scholar
  4. 4.
    Young KW, Deland JT, Lee KT, Lee YK (2010) Medial approaches to osteochondral lesion of the talus without medial malleolar osteotomy. Knee Surg Sports Traumatol Arthrosc 18(5):634–637CrossRefPubMedGoogle Scholar
  5. 5.
    Elias I, Zoga AC, Morrison WB, Besser MP, Schweitzer ME, Raikin SM (2007) Osteochondral lesions of the talus: localization and morphologic data from 424 patients using a novel anatomical grid scheme. Foot Ankle Int 28(2):154–161CrossRefPubMedGoogle Scholar
  6. 6.
    Ray RB, Coughlin EJ Jr (1947) Osteochondritis dissecans of the talus. J Bone Jt Surg Am 29(3):697–706Google Scholar
  7. 7.
    Spatt JF, Frank NG, Fox IM (1986) Transchondral fractures of the dome of the talus. J Foot Surg 25(1):68–72PubMedGoogle Scholar
  8. 8.
    Mendicino RW, Lee MS, Grossman JP, Shromoff PJ (1998) Oblique medial malleolar osteotomy for the management of talar dome lesions. J Foot Ankle Surg 37(6):516–523CrossRefPubMedGoogle Scholar
  9. 9.
    Alexander IJ, Watson JT (1991) Step-cut osteotomy of the medial malleolus for exposure of the medial ankle joint space. Foot Ankle Int 11:242–243CrossRefGoogle Scholar
  10. 10.
    Lee KB, Yang HK, Moon ES, Song EK (2008) Modified step-cut medial malleolar osteotomy for osteochondral grafting of the talus. Foot Ankle Int 29(11):1107–1110CrossRefPubMedGoogle Scholar
  11. 11.
    Wallen EA, Fallat LM (1989) Crescentic transmalleolar osteotomy for optimal exposure of the medial talar dome. J Foot Surg 28(5):389–394PubMedGoogle Scholar
  12. 12.
    Oznur A (2001) Medial malleolar window approach for osteochondral lesions of the talus. Foot Ankle Int 22:841–842CrossRefPubMedGoogle Scholar
  13. 13.
    O’Farrell TA, Costello BG (1982) Osteochondritis dissecans of the talus. The late results of surgical treatment. J Bone Jt Surg Br 64:494–497CrossRefGoogle Scholar
  14. 14.
    Cohen B, Anderson R (2002) Chevron-type transmalleolar osteotomy: an approach to medial talar dome lesions. Tech Foot Ankle Surg 1:158–162CrossRefGoogle Scholar
  15. 15.
    Bull PE, Berlet GC, Canini C, Hyer CF (2016) Rate of malunion following bi-plane Chevron medial malleolar osteotomy. Foot Ankle Int 37(6):620–626CrossRefPubMedGoogle Scholar
  16. 16.
    Gul M, Yavuz U, Cetinkaya E, Aykut US, Ozkul B, Kabukcuoglu YS (2015) Chevron osteotomy in patients with scheduled osteotomy of the medial malleolus. Acta Orthop Traumatol Turc 49(4):399–404PubMedGoogle Scholar
  17. 17.
    Leumann A, Horisberger M, Buettner O, Mueller-Gerbl M, Valderrabano V (2016) Medial malleolar osteotomy for the treatment of talar osteochondral lesions: anatomical and morbidity considerations. Knee Surg Sports Traumatol Arthrosc 24(7):2133–2139CrossRefPubMedGoogle Scholar
  18. 18.
    Raikin SM, Ching AC (2005) Bioabsorbable fixation in foot and ankle. Foot Ankle Clin 10(4):667–684CrossRefPubMedGoogle Scholar
  19. 19.
    Seitz JM, Lucas A, Kirschner M (2016) Magnesium-based compression screws: a novelty in the clinical use of implants. JOM 68:1177–1182CrossRefGoogle Scholar
  20. 20.
    Plaass C, von Falck C, Ettinger S, Sonnow L, Calderone F, Weizbauer A, Reifenrath J, Claassen L, Waizy H, Daniilidis K, Stukenborg-Colsman C, Windhagen H (2017) Bioabsorbable magnesium versus standard titanium compression screws for fixation of distal metatarsal osteotomies—3 year results of a randomized clinical trial. J Orthop Sci 2658(17):30300–30307Google Scholar
  21. 21.
    Plaass C, Ettinger S, Sonnow L, Koenneker S, Noll Y, Weizbauer A, Reifenrath J, Claassen L, Daniilidis K, Stukenborg-Colsman C, Windhagen H (2016) Early results using biodegradable magnesium screw for modified chevron osteotomies. J Orthop Res 34(12):2207–2214.  https://doi.org/10.1002/jor.23241 CrossRefPubMedGoogle Scholar
  22. 22.
    Windhagen H, Radtke K, Weizbauer A, Diekmann J, Noll Y, Kreimeyer U, Schavan R, Stukenborg-Colsman C, Waizy H (2013) Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study. Biomed Eng 12:62.  https://doi.org/10.1186/1475-925X-12-62 CrossRefGoogle Scholar
  23. 23.
    Biber R, Pauser J, Brem M, Bail HJ (2017) Bioabsorbable metal screws in traumatology: a promising innovation. Trauma Case Reports 8:11–15CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kose O, Turan A, Unal M, Acar B, Guler F (2018) Fixation of medial malleolar fractures with magnesium bioabsorbable headless compression screws: short-term clinical and radiological outcomes in eleven patients. Arch Orthop Trauma Surg 138(8):1069–1075CrossRefPubMedGoogle Scholar
  25. 25.
    Acar B, Unal M, Turan A, Kose O (2018) Isolated lateral malleolar fracture treated with a bioabsorbable magnesium compression screw. Cureus 10(4):e2539PubMedPubMedCentralGoogle Scholar
  26. 26.
    Klauser H (2018) Internal fixation of three-dimensional distal metatarsal I osteotomies in the treatment of hallux valgus deformities using biodegradable magnesium screws in comparison to titanium screws. Foot Ankle Surg.  https://doi.org/10.1016/j.fas.2018.02.005 CrossRefPubMedGoogle Scholar
  27. 27.
    Hepple S, Winson IG, Glew D (1999) Osteochondral lesions of the talus: a revised classification. Foot Ankle Int 20(12):789–793CrossRefPubMedGoogle Scholar
  28. 28.
    Gaulrapp H, Hagena FW, Wasmer G (1996) Postoperative evaluation of osteochondrosis dissecans of the talus with special reference to medial malleolar osteotomy. Z Orthop Ihre Grenzgeb 134(4):346–353CrossRefPubMedGoogle Scholar
  29. 29.
    Lareau CR, Bariteau JT, Paller DJ, Koruprolu SC, DiGiovanni CW (2015) Contribution of the medial malleolus to tibiotalar joint contact characteristics. Foot Ankle Spec 8:23–28CrossRefPubMedGoogle Scholar
  30. 30.
    van Bergen CJ, Tuijthof GJ, Sierevelt IN, van Dijk CN (2011) Direction of the oblique medial malleolar osteotomy for exposure of the talus. Arch Orthop Trauma Surg 131(7):893–901CrossRefPubMedGoogle Scholar
  31. 31.
    Lamb J, Murawski CD, Deyer TW, Kennedy JG (2013) Chevron-type medial malleolar osteotomy: a functional, radiographic and quantitative T2-mapping MRI analysis. Knee Surg Sports Traumatol Arthrosc 21(6):1283–1288CrossRefPubMedGoogle Scholar
  32. 32.
    Granata JD, DeCarbo WT, Hyer CF, Granata AM, Berlet GC (2013) Exposure of the medial talar dome: bi-plane chevron medial malleolus osteotomy. Foot Ankle Spec 6(1):12–14CrossRefPubMedGoogle Scholar
  33. 33.
    Petersen W, Taheri P, Schliemann B, Achtnich A, Winter C, Forkel P (2014) Osteochondral transplantation for the treatment of osteochondral defects at the talus with the Diamond twin system (®) and graft harvesting from the posterior femoral condyles. Arch Orthop Trauma Surg 134(6):843–852CrossRefPubMedGoogle Scholar
  34. 34.
    Busam ML, Esther RJ, Obremskey WT (2006) Hardware removal: indications and expectations. J Am Acad Orthop Surg 14(2):113–120CrossRefPubMedGoogle Scholar
  35. 35.
    Krettek C, Müller C, Meller R, Jagodzinski M, Hildebrand F, Gaulke R (2012) Is routine implant removal after trauma surgery sensible? Unfallchirurg 115(4):315–322.  https://doi.org/10.1007/s00113-012-2159-2 CrossRefPubMedGoogle Scholar
  36. 36.
    Waizy H, Seitz JM, Reifenrath Weizbauer A, Bach FW, Meyer-Lindenberg A, Denkena B, Windhagen H (2013) Biodegradable magnesium implants for orthopedic applications. J Mater Sci 48:39–5020CrossRefGoogle Scholar
  37. 37.
    Waizy H, Diekmann J, Weizbauer A, Reifenrath J, Bartsch I, Neubert V, Schavan R, Windhagen H (2014) In vivo study of a biodegradable orthopedic screw (MgYREZr-alloy) in a rabbit model for up to 12 months. J Biomater Appl 28:667–675CrossRefPubMedGoogle Scholar
  38. 38.
    Witte F, Ulrich H, Rudert M, Willbold E (2007) Biodegradable magnesium scaffolds: part 1: appropriate inflammatory response. J Biomed Mater Res A. 81(3):748–756CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Orthopedics and Traumatology, Antalya Training and Research HospitalUniversity of Health SciencesAntalyaTurkey

Personalised recommendations