Advertisement

The relationship between graft intensity on MRI and tibial tunnel placement in anatomical double-bundle ACL reconstruction

  • Takanori Teraoka
  • Yusuke HashimotoEmail author
  • Shinji Takahashi
  • Shinya Yamasaki
  • Yohei Nishida
  • Hiroaki Nakamura
Original Article • KNEE - ARTHROSCOPY

Abstract

Purpose

To determine whether the graft signal intensity of the anteromedial bundle (AMB) on MRI was related to the tibial tunnel placement, anterior–posterior (A–P) stability, and/or cyclops lesion formation following double-bundle (DB) anterior cruciate ligament (ACL) reconstruction.

Methods

Between January 2010 and August 2016, 65 patients underwent arthroscopic DB-ACL reconstruction and were followed up for a minimum of 2 years. Follow-up included 1-week postoperative CT evaluation, 1-year postoperative MRI evaluation, and 2-year postoperative measurement of A–P instability using a KT-2000 arthrometer. Tibial tunnel placement and the location of Parson’s knob were expressed as percentages. Patients were divided into two groups according to the graft signal intensity of the AMB on MRI: the high group (grades 2, 3; group H) and the low group (grade 1; group L).

Results

There were 23 knees in group H and 42 knees in group L. There was no difference between the two groups regarding the position of Parson’s knob. The AMB placement in the tibial tunnel in group H was more anterior than that in group L. The incidence of a cyclops lesion was significantly greater in group H [13 cases (56.5%)] compared with group L [7 cases (16.7%); P = .05]. The arthrometric side-to-side difference was significantly greater in group H (1.67 mm) than in group L (0.90 mm; P = .019).

Conclusion

Group H had a more anterior tunnel location and significantly greater incidence of cyclops lesions than group L. An increased signal intensity of the AMB on MRI indicates A–P instability.

Level of evidence

Level III retrospective cohort study.

Keywords

Arthroscopy Anterior cruciate ligament (ACL) Double-bundle reconstruction Magnetic resonance imaging (MRI) Tunnel placement Graft signal intensity 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Amiel D, Kleiner JB, Roux RD et al (1986) The phenomenon of ‘‘ligamentization’’: anterior cruciate ligament reconstruction with autogenous patellar tendon. J Orthop Res 4:162–172PubMedGoogle Scholar
  2. 2.
    Bedi A, Maak T, Musahl V, Citak M, O’Loughlin PF, Choi D, Pearle AD (2011) Effect of tibial tunnel position on stability of the knee after anterior cruciate ligament reconstruction: is the tibial tunnel position most important? Am J Sports Med 39(2):366–373PubMedGoogle Scholar
  3. 3.
    Bencardino JT, Beltran J (2009) MR imaging of complications of anterior cruciate ligament graft reconstruction. Radiographics 29:2115–2126PubMedGoogle Scholar
  4. 4.
    Bernard M, Hertel P, Hornung H, Cierpinski T (1997) Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg Winter 10(1):14–21Google Scholar
  5. 5.
    Cha J, Sang-Hee C, Kwon JW, Lee S-H, Ahn JH (2012) Analysis of cyclops lesions after different anterior cruciate ligament reconstructions: a comparison of the single-bundle and remnant bundle preservation techniques. Skeletal Radiol 41:997–1002PubMedGoogle Scholar
  6. 6.
    Claes S, Verdonk P, Forsyth R et al (2011) The ‘‘ligamentization’’ process in anterior cruciate ligament reconstruction: what happens to the human graft? A systematic review of the literature. Am J Sports Med 39:2476–2483PubMedGoogle Scholar
  7. 7.
    Daniel DM, Malcom LL, Losse G, Stone ML, Sachs R, Burks R (1985) Instrumented measurement of anterior laxity of the knee. J Bone Joint Surg Am 67:720–726PubMedGoogle Scholar
  8. 8.
    David M, Bradley A, Bergman G (2000) MR imaging of cyclops lesions. Am J Roentgenol 174(3):719–726Google Scholar
  9. 9.
    Drogset JO, Grontvedt T, Robak OR, Molster A, Viset AT, Engebretsen L (2006) A sixteen-year follow-up of three operative techniques for the treatment of acute ruptures of the anterior cruciate ligament. J Bone Joint Surg Am 88:944–952PubMedGoogle Scholar
  10. 10.
    Fernandes TL, Fregni F, Weaver K, Pedrinelli A, Camanho GL, Hernandez AJ (2014) The influence of femoral tunnel position in single-bundle ACL reconstruction on functional outcomes and return to sports. Knee Surg Sports Traumatol Arthrosc 22:97–103PubMedGoogle Scholar
  11. 11.
    Fujii M, Furumatsu T (2015) Intercondylar notch size influences cyclops formation after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 23:1092–1099PubMedGoogle Scholar
  12. 12.
    Fujii M, Furumatsu T, Miyazawa S, Okada Y, Tanaka T, Ozaki T, Abe N (2015) Intercondylar notch size influences cyclops formation after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 23(4):1092–1099PubMedGoogle Scholar
  13. 13.
    Hatayama K, Terauchi M, Saito K, Higuchi H, Yanagisawa S, Takagishi K (2013) The importance of tibial tunnel placement in anatomic double-bundle anterior cruciate ligamentreconstruction. Arthroscopy 29(6):1072–1078PubMedGoogle Scholar
  14. 14.
    Hoteya K, Kato Y, Motojima S, Ingham SJ, Horaguchi T, Saito A, Tokuhashi Y (2011) Association between intercondylar notch narrowing and bilateral anterior cruciate ligament injuries in athletes. Arch Orthop Trauma Surg 131(3):371–376PubMedGoogle Scholar
  15. 15.
    Howell SM, Clark JA, Farley TE (1991) A rationale for predicting anterior cruciate graft impingement by the intercondylar roof. A magnetic resonance imaging study. Am J Sports Med 19:276–282PubMedGoogle Scholar
  16. 16.
    Howell SM, Clark JA, Blasier RD (1991) Serial magnetic resonance imaging of hamstring anterior cruciate ligament autografts during the first year of implantation. A preliminary study. Am J Sports Med 19:42–47PubMedGoogle Scholar
  17. 17.
    Howell SM, Berns GS, Farley TE (1991) Unimpinged and impinged anterior cruciate ligament grafts: MR signal intensity measurements. Radiology 179:639–643PubMedGoogle Scholar
  18. 18.
    Howell SM, Knox KE, Farley TE, Taylor MA (1995) Revascularization of a human anterior cruciate ligament graft during the first two years of implantation. Am J Sports Med 23:42–49PubMedGoogle Scholar
  19. 19.
    Iriuchishima T, Horaguchi T, Kubomura T, Morimoto Y, Fu FH (2011) Evaluation of the intercondylar roof impingement after anatomical double-bundle anterior cruciate ligament reconstruction using 3D-CT. Knee Surg Sports Traumatol Arthrosc 19(4):674–679PubMedGoogle Scholar
  20. 20.
    Iriuchishima T, Shirakura K, Fu FH. (2013) Graft impingement in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. Mar;21(3):664-70PubMedGoogle Scholar
  21. 21.
    Iriuchishima T, Shirakura K, Fu FH (2013) Graft impingement in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 21(3):664–670PubMedGoogle Scholar
  22. 22.
    Irrgang JJ, Anderson AF, Boland AL, Harner CD, Kurosaka M, Neyret P, Richmond JC, Shelbone KD (2001) Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med 29(5):600–613Google Scholar
  23. 23.
    Janssen RP, Scheffler SU (2014) Intra-articular remodelling of hamstring tendon grafts after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 22:2102–2108PubMedGoogle Scholar
  24. 24.
    Janssen RP, van der Wijk J, Fiedler A (2011) Remodelling of human hamstring autografts after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 19:1299–1306PubMedPubMedCentralGoogle Scholar
  25. 25.
    Kiekara T, Järvelä T, Huhtala H, Paakkala A (2012) MRI of double-bundle ACL reconstruction: evaluation of graft findings. Skeltal Radiol 41:835–842Google Scholar
  26. 26.
    Lane JG, McFadden P, Bowden K (1993) The ligamentization process: a 4 year case study following ACL reconstruction with a semitendinosis graft. Arthroscopy 9:149–153PubMedGoogle Scholar
  27. 27.
    Lebel B, Hulet C, Galaud B, Burdin G, Locker B, Vielpeau C (2008) Arthroscopic reconstruction of the anterior cruciate ligament using bone-patellar tendon-bone autograft: a minimun 10-year follow-up. Am J Sports Med 36:1275–1282PubMedGoogle Scholar
  28. 28.
    Lertwanich P, Martins CA, Asai S, Ingham SJ, Smolinski P, Fu FH (2011) Anterior cruciate ligament tunnel position measurement reliability on 3-dimensional reconstructed computed tomography. Arthroscopy 27(3):391–398PubMedGoogle Scholar
  29. 29.
    Lysholm J, Gillquist J (1982) Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med 10:150–154PubMedGoogle Scholar
  30. 30.
    Marumo K, Saito M, Yamagishi T (2005) The ‘‘ligamentization’’ process in human anterior cruciate ligament reconstruction with autogenous patellar and hamstring tendons. Am J Sports Med 33:1166–1173PubMedGoogle Scholar
  31. 31.
    Matassi F, Sirleo L, Carulli C, Innocenti M (2015) Anatomical anterior cruciate ligament reconstruction: transtibial versus outside–in technique. Joints 3(1):6–14PubMedPubMedCentralGoogle Scholar
  32. 32.
    Mueller T, Kdolsky R, Großschmidt K, Schabus R, Kwasny O, Plenk H Jr (1999) Cyclops and cyclopoid formation after anterior cruciate ligament reconstruction: clinical and histomorphological differences. Knee Surg Sports Traumatol Arthrosc 7:284–289Google Scholar
  33. 33.
    Nishimori M, Furuta T, Deie M (2014) Parsons’ knob, the bony landmark of the tibial insertion of the anterior cruciate ligament, evaluated by three-dimensional computed tomography. Asia-Pac J Sports Med Arthrosc Rehabil Technol 1:126–131Google Scholar
  34. 34.
    Ohsawa T et al (2012) Clinical and second-look arthroscopic study comparing 2 tibial landmarks for tunnel insertions during double-bundle ACL reconstruction with a minimum 2-year follow-up. Am J Sports Med 40:2479PubMedGoogle Scholar
  35. 35.
    Park JS, Park JH, Wang JH, Oh CH, Hwang MH, Lee SH, Kim JG (2015) Comparison of femoral tunnel geometry, using in vivo 3-dimensional computed tomography, during transportal and outside-in single-bundle anterior cruciate ligament reconstruction techniques. Arthroscopy 31(1):83–91PubMedGoogle Scholar
  36. 36.
    Parsons FG (1906) Observations of the head of the tibia. J Anat Physiol 41:83–87PubMedPubMedCentralGoogle Scholar
  37. 37.
    Pećina M, Bajok I, Pećina HI (2001) Tuberculum intercondylare tibiae tertium as a predictive factor for anterior cruciate ligament injury. Am J Sports Med 29(6):709–711PubMedGoogle Scholar
  38. 38.
    Sadoghi P, Kropfl A, Jansson V, Muller PE, Pietschmann MF, Fischmeister MF (2011) Impact of tibial and femoral tunnel position on clinical results after anterior cruciate ligament reconstruction. Arthroscopy 27:355–364PubMedGoogle Scholar
  39. 39.
    Saupe N, White LM, Chiavaras MM et al (2008) Anterior cruciate ligament reconstruction grafts: MR imaging features at long-term follow-up-correlation with functional and clinical evaluation. Radiology 249(2):581–590PubMedGoogle Scholar
  40. 40.
    Sim JA, Kim JM, Lee S, Bae JY, Seon JK (2017) Comparison of tunnel variability between trans-portal and outside-in techniques in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 25(4):1227–1233PubMedGoogle Scholar
  41. 41.
    Simpfendorfer C et al (2015) Pseudocyclops: two cases of ACL graft partial tears mimicking cyclops lesions on MRI. Skeletal Radiol 44:1169–1173PubMedGoogle Scholar
  42. 42.
    Sonoda M, Morikawa T, Tsuchiya K, Moriya H (2007) Correlation between knee laxity and graft appearance on magnetic resonance imaging after double-bundle hamstring graft anterior cruciate ligament reconstruction. Am J Sports Med 35(6):936–942PubMedGoogle Scholar
  43. 43.
    Strand T, Molster A, Hordvik M, Krukhaug Y (2005) Long-term follow-up after primary repair of the anterior cruciate ligament: clinical and radiological evaluation 15-23 years postoperatively. Arch Orthop Trauma Surg 125:217–221PubMedGoogle Scholar
  44. 44.
    Takahashi M, Doi M (2006) Anatomical study of the femoral and tibial insertions of the anteromedial and posterolateral bundles of human anterior cruciate ligament. Am J Sports Med 34(5):787–792PubMedGoogle Scholar
  45. 45.
    Takeda Y, Iwame T, Takasago T, Kondo K, Goto T, Fujii K, Naruse A (2013) Comparison of tunnel orientation between transtibial and anteromedial portal techniques for anatomic double-bundle anterior cruciate ligament reconstruction using 3-dimensional computed tomography. Arthroscopy 29(2):195–204PubMedGoogle Scholar
  46. 46.
    Taylor DC, Posner M, Curl WW, Feagin JA (2009) Isolated tears of the anterior cruciate ligament: over 30-year follow-up of patients treated with arthrotomy and primary repair. Am J Sports Med 37:65–71PubMedGoogle Scholar
  47. 47.
    Tsukada H, Ishibashi Y, Tsuda E, Fukuda A, Toh S (2008) Anatomical analysis of the anterior cruciate ligament femoral and tibial footprints. J Orthop Sci 13(2):122–129PubMedGoogle Scholar
  48. 48.
    Van der Bracht H et al (2014) Can a tibial tunnel in ACL surgery be placed anatomically without impinging on the femoral notch? A risk factor analysis. Knee Surg Sports Traumatol Arthroscopy 22:291–297Google Scholar
  49. 49.
    Van der Bracht H, Bellemans J, Victor J, Verhelst L, Page B, Verdonk P (2014) An a tibial tunnel in ACL surgery be placed anatomically without impinging on the femoral notch? A risk factor analysis. Knee Surg Sports Traumatol Arthrosc 22(2):291–297PubMedGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  • Takanori Teraoka
    • 1
    • 2
  • Yusuke Hashimoto
    • 1
    Email author
  • Shinji Takahashi
    • 1
    • 2
    • 3
  • Shinya Yamasaki
    • 3
  • Yohei Nishida
    • 1
  • Hiroaki Nakamura
    • 1
  1. 1.Department of Orthopaedic SurgeryOsaka City University Graduate School of MedicineOsakaJapan
  2. 2.Department of Orthopaedic SurgerySaiseikai Nakatsu HospitalOsakaJapan
  3. 3.Department of Orthopaedic SurgeryOsaka City General HospitalOsakaJapan

Personalised recommendations