Suture anchor fixation strength in the Latarjet procedure: a biomechanical study in cadavers

  • Behzad Saleky
  • Onur Hapa
  • Yagmur IsinEmail author
  • Mustafa Güvençer
  • Hasan Havıtçıoğlu
  • Bora Uzun



The use of metallic screws for graft fixation during the Latarjet procedure is not devoid of complications. The purpose of the present cadaver study was to determine the initial strength of coracoid graft fixation using suture anchors and compare it to that of the traditional screw fixation of the graft using a fresh frozen human shoulder cadaver model.

Materials and methods

Twelve unpaired fresh frozen cadaver shoulders were utilized. In the first group, suture anchor fixation of the graft was used, while 3.75-mm cannulated screws were used in the second group. The specimens were then cyclically loaded from 5 to 150 N at a speed of 0.05 mm/s for 100 cycles. After cyclic loading, each specimen was then loaded at a constant rate of 0.5 mm/s until 7 mm of displacement. Cyclic elongation, peak-to-peak displacement, stiffness and maximum load were measured.


There were no significant differences between the traditional screw fixation and fixation using suture anchors in elongation, peak-to-peak displacement, stiffness and maximum load.


In this study, traditional screw fixation and fixation using suture anchors did not significantly affect biomechanical performance in a classic Latarjet procedure.


Shoulder instability Latarjet procedure Screw fixation Suture anchor fixation 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.


  1. 1.
    Latarjet M (1954) A propos du traitement des luxations recidivantes de l’姿 aule. Lyon Chir 49:994–997PubMedGoogle Scholar
  2. 2.
    Griesser MJ, Harris JD, McCoy BW, Hussain WM, Jones MH, Bishop JY, Miniaci A (2013) Complications and re-operations after Bristow–Latarjet shoulder stabilization: a systematic review. J Shoulder Elbow Surg 22(2):286–292CrossRefGoogle Scholar
  3. 3.
    Longo UG, Loppini M, Rizzello G, Ciuffreda M, Maffulli N, Denaro V (2014) Latarjet, Bristow, and Eden-Hybinette procedures for anterior shoulder dislocation: systematic review and quantitative synthesis of the literature. Arthrosc J Arthrosc Relat Surg 30(9):1184–1211CrossRefGoogle Scholar
  4. 4.
    Shah AA, Butler RB, Romanowski J, Goel D, Karadagli D, Warner JJ (2012) Short-term complications of the Latarjet procedure. JBJS 94(6):495–501CrossRefGoogle Scholar
  5. 5.
    Gupta A, Delaney R, Petkin K, Lafosse L (2015) Complications of the Latarjet procedure. Curr Rev Musculoskelet Med 8(1):59–66CrossRefGoogle Scholar
  6. 6.
    Maquieira GJ, Gerber C, Schneeberger AG (2007) Suprascapular nerve palsy after the Latarjet procedure. J Shoulder Elbow Surg 16(2):e13–e15CrossRefGoogle Scholar
  7. 7.
    Vega JR, Irribarra LA, Baar AK, Iñiguez M, Salgado M, Gana N (2008) Arthroscopic fixation of displaced tibial eminence fractures: a new growth plate-sparing method. Arthrosc J Arthrosc Relat Surg 24(11):1239–1243CrossRefGoogle Scholar
  8. 8.
    Millett PJ, Braun S (2009) The “bony Bankart bridge” procedure: a new arthroscopic technique for reduction and internal fixation of a bony Bankart lesion. Arthrosc J Arthrosc Relat Surg 25(1):102–105CrossRefGoogle Scholar
  9. 9.
    Bateman DK, Barlow JD, VanBeek C, Abboud JA (2015) Suture anchor fixation of displaced olecranon fractures in the elderly: a case series and surgical technique. J Shoulder Elbow Surg 24(7):1090–1097CrossRefGoogle Scholar
  10. 10.
    Rigal J, Thelen T, Angelliaume A, Pontailler JR, Lefevre Y (2016) A new procedure for fractures of the medial epicondyle in children: Mitek® bone suture anchor. Orthop Traumatol Surg Res 102(1):117–120CrossRefGoogle Scholar
  11. 11.
    Edwards TB, Walch G (2002) The Latarjet procedure for recurrent anterior shoulder instability: rationale and technique. Oper Tech Sports Med 10(1):25–32CrossRefGoogle Scholar
  12. 12.
    McHale KJ, Sanchez G, Lavery KP, Rossy WH, Sanchez A, Ferrari MB, Provencher MT (2017) Latarjet technique for treatment of anterior shoulder instability with glenoid bone loss. Arthrosc Tech 6(3):e791–e799CrossRefGoogle Scholar
  13. 13.
    Shin JJ, Hamamoto JT, Leroux TS, Saccomanno MF, Jain A, Khair MM, Cole BJ (2017) Biomechanical analysis of Latarjet screw fixation: comparison of screw types and fixation methods. Arthrosc J Arthrosc Relat Surg 33(9):1646–1653CrossRefGoogle Scholar
  14. 14.
    van der Linde JA, van Wijngaarden R, Somford MP, van Deurzen DF, van den Bekerom MP (2016) The Bristow–Latarjet procedure, a historical note on a technique in comeback. Knee Surg Sports Traumatol Arthrosc 24(2):470–478CrossRefGoogle Scholar
  15. 15.
    Provencher CMT, Bhatia S, Ghodadra NS, Grumet RC, Bach BR Jr, Dewing LCB, Romeo AA (2010) Recurrent shoulder instability: current concepts for evaluation and management of glenoid bone loss. JBJS 92(Supplement_2):133–151CrossRefGoogle Scholar
  16. 16.
    Boileau P, Alami G, Rumian A, Schwartz DG, Trojani C, Seidl AJ (2017) The doubled-suture nice knot. Orthopedics 40(2):e382–e386CrossRefGoogle Scholar
  17. 17.
    Butt U, Charalambous CP (2012) Complications associated with open coracoid transfer procedures for shoulder instability. J Shoulder Elbow Surg 21(8):1110–1119CrossRefGoogle Scholar
  18. 18.
    Delaney RA, Freehill MT, Janfaza DR, Vlassakov KV, Higgins LD, Warner JJ (2014) 2014 Neer Award paper: neuromonitoring the Latarjet procedure. J Shoulder Elbow Surg 23(10):1473–1480CrossRefGoogle Scholar
  19. 19.
    Alvi HM, Monroe EJ, Muriuki M, Verma RN, Marra G, Saltzman MD (2016) Latarjet fixation: a cadaveric biomechanical study evaluating cortical and cannulated screw fixation. Orthop J Sports Med 4(4):2325967116643533CrossRefGoogle Scholar
  20. 20.
    Weppe F, Magnussen RA, Lustig S, Demey G, Neyret P, Servien E (2011) A biomechanical evaluation of bicortical metal screw fixation versus absorbable interference screw fixation after coracoid transfer for anterior shoulder instability. Arthrosc J Arthrosc Relat Surg 27(10):1358–1363CrossRefGoogle Scholar
  21. 21.
    Giles JW, Puskas G, Welsh M, Johnson JA, Athwal GS (2012) Do the traditional and modified Latarjet techniques produce equivalent reconstruction stability and strength? Am J Sports Med 40(12):2801–2807CrossRefGoogle Scholar
  22. 22.
    Ahmed M, Young BT, Bledsoe G, Cutuk A, Kaar SG (2013) Biomechanical comparison of long head of biceps tenodesis with interference screw and biceps sling soft tissue techniques. Arthrosc J Arthrosc Relat Surg 29(7):1157–1163CrossRefGoogle Scholar
  23. 23.
    Arvesen JE, Gill SW, Sinatra PM, Eng M, Bledsoe G, Kaar SG (2016) Biomechanical contribution of tension-reducing rotator cuff sutures in 3-part proximal humerus fractures. J Orthop Trauma 30(8):e262–e266CrossRefGoogle Scholar
  24. 24.
    Pastor MF, Kraemer M, Hurschler C, Claassen L, Wellmann M, Smith T (2016) Transfer of the long head of biceps to the conjoint tendon. A biomechanical study. Clin Biomech 32:80–84CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Orthopaedics and TraumatologyDokuz Eylul UniversityIzmirTurkey
  2. 2.Department of AnatomyDokuz Eylul UniversityIzmirTurkey
  3. 3.Department of Biomechanics, Health Science InstituteDokuz Eylul UniversityIzmirTurkey

Personalised recommendations