Advertisement

The effect on outcomes of the application of circumferential cerclage cable following intramedullary nailing in reverse intertrochanteric femoral fractures

  • Ahmet Imerci
  • Nevres Hurriyet Aydogan
  • Kursad Tosun
Original Article • HIP - FRACTURES
  • 4 Downloads

Abstract

Introduction

The aim of this study was to evaluate the effect on union results of the application of cerclage cable around the lateral femoral wall (LFW) in postoperative fracture displacement.

Patients and methods

A retrospective evaluation was made of all the cases of reverse intertrochanteric fractures over a 7-year period in a trauma center. The study included 69 fractures treated with intramedullary nailing. The age of the patients, postoperative reduction quality and complications such as mechanical failure and non-union (1.4%) were obtained from the medical records. Changes in the neck-shaft angle, the amount of LFW displacement and telescoping of proximal femoral nail antirotation blades and lag screws were measured on anteroposterior and lateral radiographs. The functional evaluation of the Harris Hip Score was recorded at the final follow-up examination.

Results

The mean age of the patients was 56.31 years (range 18–93 years). Closed reduction was applied in 37 (53.7%) cases, open reduction in 10 (14.5%) and with cerclage cable in 22 (31.8%). Mechanical failure developed in 8 (11.5%) cases where cerclage cable was not used. In 2 of these 8 cases, open reduction was successful. In the patients where cerclage cable was applied, no mechanical failure developed and no case underwent revision surgery. In the cases where cerclage cable was not used, a significantly higher rate of telescoping was found. (p = 0.001). The application of cerclage cable was seen to significantly reduce the amount of LFW displacement (2.23 mm vs 8.86 mm) and shorten the time to partial weight bearing (p = 0.000).

Conclusion

In reverse intertrochanteric fractures, the application of circumferential cerclage cable with cephalomedullary nailing contributes to primary stability and accelerates mobilization. Therefore, it can be considered a good option. It reduces the risk of failure internal fixation for intertrochanteric fracture.

Keywords

Intertrochanteric fracture Cable Intramedullary nailing 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Haidukewych GJ, Israel TA, Berry DJ (2001) Reverse obliquity fractures of the intertrochanteric region of the femur. J Bone Joint Surg Am 83-A:643–650CrossRefGoogle Scholar
  2. 2.
    Sadowski C, Lubbeke A, Saudan M, Riand N, Stern R, Hoffmeyer P (2002) Treatment of reverse oblique and transverse intertrochanteric fractures with use of an intramedullary nail or a 958 screw-plate: a prospective, randomized study. J Bone Joint Surg 84:372–381CrossRefGoogle Scholar
  3. 3.
    Kuzyk PR, Lobo J, Whelan D, Zdero R, McKee MD, Schemitsch EH (2009) Biomechanical evaluation of extramedullary versus intramedullary fixation for reverse obliquity intertrochanteric fractures. J Orthop Trauma 23(1):31–38CrossRefGoogle Scholar
  4. 4.
    Boopalan PR, Oh JK, Kim TY, Oh CW, Cho JW, Shon WY (2012) Incidence and radiologic outcome of intraoperative lateral wall fractures in OTA 31A1 and A2 fractures treated with cephalomedullary nailing. J Orthop Trauma 26(11):638–642CrossRefGoogle Scholar
  5. 5.
    Palm H, Jacobsen S, Sonne-Holm S, Gebuhr P, Hip Fracture Study Group (2007) Integrity of the lateral femoral wall in intertrochanteric hip fractures: an important predictor of a reoperation. J Bone Joint Surg Am 89(3):470–475Google Scholar
  6. 6.
    Ma Z, Chang SM (2014) Letter to the editor: where is the lateral femoral wall? Int Orthop 38(12):2645–2646CrossRefGoogle Scholar
  7. 7.
    Hsu CE, Chiu YC, Tsai SH, Lin TC, Lee MH, Huang KC (2015) Trochanter stabilising plate improves treatment outcomes in AO/OTA 31-A2 intertrochanteric fractures with critical thin femoral lateral walls. Injury 46(6):1047–1053CrossRefGoogle Scholar
  8. 8.
    Studer P, Suhm N, Wang Q, Rosenthal R, Saleh HA, Jakob M (2015) Displaced trochanteric fragments lead to poor functional outcome in pertrochanteric fractures treated by cephalomedullary nails. Injury 46(12):2384–2388CrossRefGoogle Scholar
  9. 9.
    Kim Y, Bahk WJ, Yoon YC, Cho JW, Shon WY, Oh CW, Oh JK (2015) Radiologic healing of lateral femoral wall fragments after intramedullary nail fixation for A3.3 intertrochanteric fractures. Arch Orthop Trauma Surg 135(10):1349–1356CrossRefGoogle Scholar
  10. 10.
    Yun HH, Lee YI, Kim KH, Yun S (2015) Use of auxiliary locking plates for the treatment of unstable pertrochanteric femur fractures. Orthopedic 38(5):305–309CrossRefGoogle Scholar
  11. 11.
    Ban I, Birkelund L, Palm H, Brix M, Troelsen A (2012) Circumferential wires as a supplement to intramedullary nailing in unstable trochanteric hip fractures: 4 reoperations in 60 patients followed for 1 year. Acta Orthop 83(3):240–243CrossRefGoogle Scholar
  12. 12.
    Hoskins W, Bingham R, Joseph S, Liew D, Love D, Bucknill A, Oppy A, Griffin X (2015) Subtrochanteric fracture: the effect of cerclage wire on fracture reduction and outcome. Injury 46(10):1992–1995CrossRefGoogle Scholar
  13. 13.
    Tomás J, Teixidor J, Batalla L, Pacha D, Cortina J (2013) Subtrochanteric fractures: treatment with cerclage wire and long intramedullary nail. J Orthop Trauma 27(7):e157–e160CrossRefGoogle Scholar
  14. 14.
    Park SY, Yang KH, Yoo JH, Yoon HK, Park HW (2008) The treatment of reverse obliquity intertrochanteric fractures with the intramedullary hip nail. J Trauma 65(4):852–857CrossRefGoogle Scholar
  15. 15.
    Vidyadhara S, Rao SK (2007) One and two femoral neck screws with intramedullary nails for unstable trochanteric fractures of femur in the elderly–randomised clinical trial. Injury 38:806–814CrossRefGoogle Scholar
  16. 16.
    Cleveland M, Bosworth DM, Thompson FR, Wılson HJ Jr, Ishızuka T (1959) A ten-year analysis of intertrochanteric fractures of the femur. J Bone Joint Surg Am 41-A:1399–1408CrossRefGoogle Scholar
  17. 17.
    R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/
  18. 18.
    Min WK, Kim SY, Kim TK, Lee KB, Cho MR, Ha YC, Koo KH (2007) Proximal femoral nail for the treatment of reverse obliquity intertrochanteric fractures compared with gamma nail. J Trauma 63(5):1054–1060CrossRefGoogle Scholar
  19. 19.
    Matre K, Havelin LI, Gjertsen JE, Vinje T, Espehaug B, Fevang JM (2013) Sliding hip screw versus IM nail in reverse oblique trochanteric and subtrochanteric fractures. A study of 2716 patients in the Norwegian Hip Fracture Register. Injury 44(6):735–742CrossRefGoogle Scholar
  20. 20.
    Gupta RK, Sangwan K, Kamboj P, Punia SS, Walecha P (2010) Unstable trochanteric fractures: the role of lateral wall reconstruction. Int Orthop 34(1):125–129CrossRefGoogle Scholar
  21. 21.
    Babst R, Renner N, Biedermann M, Rosso R, Heberer M, Harder F, Regazzoni P (1998) Clinical results using the trochanter stabilizing plate (TSP): the modular extension of the dynamic hip screw (DHS) for internal fixation of selected unstable intertrochanteric fractures. J Orthop Trauma 12(6):392–399CrossRefGoogle Scholar
  22. 22.
    Langford J, Pillai G, Ugliailoro AD, Yang E (2011) Perioperative lateral trochanteric wall fractures: sliding hip screw versus percutaneous compression plate for intertrochanteric hip fractures. J Orthop Trauma 25(4):191–195CrossRefGoogle Scholar
  23. 23.
    Nherera L, Trueman P, Horner A, Watson T, Johnstone AJ (2018) Comparison of a twin interlocking derotation and compression screw cephalomedullary nail (InterTAN) with a single screw derotation cephalomedullary nail (proximal femoral nail antirotation): a systematic review and meta-analysis for intertrochanteric fractures. J Orthop Surg Res 2(13):46CrossRefGoogle Scholar
  24. 24.
    Afsari A, Liporace F, Lindvall E, Infante A Jr, Sagi HC, Haidukewych GJ (2009) Clamp-assisted reduction of high subtrocanteric fractures of the femur. J Bone Joint Surg (Am) 91(8):1913–1918CrossRefGoogle Scholar
  25. 25.
    Kennedy MT, Mitra A, Hierlihy TG, Harty JA, Reidy D, Dolan M (2011) Subtrochanteric hip fractures treated with cerclage cables and long cephalomedullary nails: a review of 17 consecutive cases over 2 years. Injury 42(11):1317–1321CrossRefGoogle Scholar
  26. 26.
    Honkonen SE, Vihtonen K, Jarvinen MJ (2004) Second generation cephalo medullary nails in the treatment of reverse obliquity intertrochanteric fractures of the proximal femur. Injury 35:179–183CrossRefGoogle Scholar
  27. 27.
    Al-yassari G, Langstaff RJ, Jones JW, Al- Lami M (2002) The AO/ASIF proximal femoral nail (PFN) for the treatment of unstable trochanteric femoral fracture. Injury 33(5):395–399CrossRefGoogle Scholar
  28. 28.
    Ozkan K, Eceviz E, Unay K, Tasyikan L, Akman B, Eren A (2011) Treatment of reverse oblique trochanteric femoral fractures with proximal femoral nail. Int Orthop 35(4):595–598CrossRefGoogle Scholar
  29. 29.
    Wei J, Qin DA, Guo XS (2015) Curative effect analysis on proximal fermoral nail antirotation for the treatment of femoral intertrochanteric fracture and integrity of lateral trochanteric wall. Zhongguo Gu Shang 28(6):572–575Google Scholar
  30. 30.
    Angelini A, Battiato C (2016) Combination of low-contact cerclage wiring and osteosynthesis in the treatment of femoral fractures. Eur J Orthop Surg Traumatol 26(4):397–406CrossRefGoogle Scholar
  31. 31.
    Müller T, Topp T, Kühne CA, Gebhart G, Ruchholtz S, Zettl R (2011) The benefit of wire cerclage stabilisation of the medial hinge in intramedullary nailing for the treatment of subtrochanteric femoral fractures: a biomechanical study. Int Orthop 35(8):1237–1243CrossRefGoogle Scholar
  32. 32.
    Gao YS, Guo YJ, Yu XG, Chen Y, Chen C, Lu NJ (2018) A novel cerclage wiring technique in intertrochanteric femoral fractures treated by intramedullary nails in young adults. BMC Musculoskelet Disord 6(19):359CrossRefGoogle Scholar
  33. 33.
    Fogagnolo F, Kfuri M Jr, Paccola CA (2004) Intramedullary fixation of pertrochanteric hip fractures with the short AO-ASIF proximal femoral nail. Arch Orthop Trauma Surg 124(1):31–37CrossRefGoogle Scholar
  34. 34.
    Eberle S, Gabel J, Hungerer S, Hoffmann S, Pätzold R, Augat P, Bühren V (2012) Auxiliary locking plate improves fracture stability and healing in intertrochanteric fractures fixated by intramedullary nail. Clin Biomech (Bristol, Avon) 27(10):1006–1010CrossRefGoogle Scholar
  35. 35.
    Biber R, Bail HJ, Stedtfeld HW (2013) Lateral cortical notching in specific cases of delayed unions or nonunions after intertrochanteric and reversed fractures. Arch Orthop Trauma Surg 133:495–501CrossRefGoogle Scholar
  36. 36.
    Tomás-Hernández J, Núñez-Camarena J, Teixidor-Serra J, Guerra-Farfan E, Selga J, Antonio Porcel J, Andrés-Peiró JV, Molero V (2018) Salvage for intramedullary nailing breakage after operative treatment of trochanteric fractures. Injury 49(Suppl 2):S44–S50CrossRefGoogle Scholar
  37. 37.
    Perren SM, Fernandez Dell’Oca A, Lenz M, Windolf M (2011) Cerclage, evolution and potential of a Cinderella technology. An overview with reference to periprosthetic fractures. Acta Chir Orthop Traumatol Cech 78(3):190–199Google Scholar
  38. 38.
    Apivatthakakul T, Phaliphot J, Leuvitoonvechkit S (2013) Percutaneous cerclage wiring, does it disrupt femoral blood supply? A cadaveric injection study. Injury 44(2):168–174CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Ahmet Imerci
    • 1
    • 2
  • Nevres Hurriyet Aydogan
    • 1
  • Kursad Tosun
    • 3
  1. 1.Department of Orthopaedics and Traumatology, Faculty of MedicineMugla Sitki Kocman UniversityMuglaTurkey
  2. 2.MenteseTurkey
  3. 3.Siena CollegeLoudonvilleUSA

Personalised recommendations