Advertisement

Single-use instrumentation in posterior lumbar fusion could decrease incidence of surgical site infection: a prospective bi-centric study

  • Stéphane Litrico
  • Geoffrey Recanati
  • Antoine Gennari
  • Cédric Maillot
  • Mo Saffarini
  • Jean-Charles Le HuecEmail author
Original Article • LUMBAR - FUSION

Abstract

Purpose

Single-use surgical instruments were recently introduced to improve OR efficiency and reduce infection risks. This study aimed to investigate clinical results 1 year after instrumented lumbar fusion, with the aid of single-use surgical instruments, with particular attention to surgical site infection and Oswestry Disability Index (ODI).

Method

This prospective bi-centric study included 21 men and 28 women, aged 61.6 ± 12.8 years, that underwent short instrumented lumbar fusion for degenerative disc disease, canal stenosis, or degenerative spondylolisthesis. All patients underwent posterior or transforaminal lumbar interbody fusion, using the SteriSpine™ PS Pedicle Screw System, available in multiple traceable sterile kits.

Results

Instrumented fusion was performed at one level in 31, two levels in 11, three levels in 5, and four levels in 2 patients. The mean follow-up was 16.4 ± 2.1 months, during which the ODI improved by 20 or more points in 28 patients (57 %), improved by less than 20 points in 17 patients (35 %), and remained unchanged or worsened in 4 patients (8 %). Only one infection (2 %) was observed in a 60-year-old man with previous spine surgery and two additional risk factors (diabetes mellitus and BMI 38). Compared to an older series, using reusable instrumentation, performed by the same team for the same indications, the clinical outcomes were similar but the infection rate was 6 %.

Discussion

Single-use instrumentation could reduce the incidence of surgical site infections following lumbar fusion to acceptable levels as in hip and knee arthroplasties. The preservation of screws and rods in sterile packs until ready for insertion reduces their exposure to air-borne bacteria in the OR and eliminates their contamination through repetitive hospital sterilization. The short operation time and minimal blood loss achieved could also contribute to the reduction in infection risks.

Level of evidence

Level II, prospective randomized bi-centric study.

Keywords

Instrumented spine surgery Posterior lumbar fusion Single-use instruments Surgical site infection 

Notes

Compliance with ethical standards

Conflict of interest

None.

References

  1. 1.
    Pull ter Gunne AF, Cohen DB (2009) Incidence, prevalence, and analysis of risk factors for surgical site infection following adult spinal surgery. Spine 34(13):1422–1428PubMedCrossRefGoogle Scholar
  2. 2.
    Gerometta A, Rodriguez Olaverri JC, Bitan F (2012) Infections in spinal instrumentation. Int Orthop 36(2):457–464PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Department of Communicable Disease SaR (2002) Prevention of hospital-acquired infections: a practical guide. World Health Organisation. WHO/CDS/CSR/EPH/2002.12. http://www.who.int/csr/resources/publications/drugresist/en/whocdscsreph200212.pdf?ua=1
  4. 4.
    Andreshak TG, An HS, Hall J, Stein B (1997) Lumbar spine surgery in the obese patient. J Spinal Disord 10(5):376–379PubMedGoogle Scholar
  5. 5.
    Capen DA, Calderone RR, Green A (1996) Perioperative risk factors for wound infections after lower back fusions. Orthop Clin N Am 27(1):83–86Google Scholar
  6. 6.
    Dahners LE, Mullis BH (2004) Effects of nonsteroidal anti-inflammatory drugs on bone formation and soft-tissue healing. J Am Acad Orthop Surg 12(3):139–143PubMedGoogle Scholar
  7. 7.
    Ho C, Sucato DJ, Richards BS (2007) Risk factors for the development of delayed infections following posterior spinal fusion and instrumentation in adolescent idiopathic scoliosis patients. Spine 32(20):2272–2277PubMedCrossRefGoogle Scholar
  8. 8.
    McPhee IB, Williams RP, Swanson CE (1998) Factors influencing wound healing after surgery for metastatic disease of the spine. Spine 23(6):726–732 (discussion 732–723)PubMedCrossRefGoogle Scholar
  9. 9.
    Olsen MA, Mayfield J, Lauryssen C, Polish LB, Jones M, Vest J, Fraser VJ (2003) Risk factors for surgical site infection in spinal surgery. J Neurosurg 98(2 Suppl):149–155PubMedGoogle Scholar
  10. 10.
    Sponseller PD, LaPorte DM, Hungerford MW, Eck K, Bridwell KH, Lenke LG (2000) Deep wound infections after neuromuscular scoliosis surgery: a multicenter study of risk factors and treatment outcomes. Spine 25(19):2461–2466PubMedCrossRefGoogle Scholar
  11. 11.
    Wimmer C, Gluch H (1996) Management of postoperative wound infection in posterior spinal fusion with instrumentation. J Spinal Disord 9(6):505–508PubMedGoogle Scholar
  12. 12.
    Wimmer C, Gluch H, Franzreb M, Ogon M (1998) Predisposing factors for infection in spine surgery: a survey of 850 spinal procedures. J Spinal Disord 11(2):124–128PubMedGoogle Scholar
  13. 13.
    Nunez-Pereira S, Pellise F, Rodriguez-Pardo D, Pigrau C, Sanchez JM, Bago J, Villanueva C, Caceres E (2011) Individualized antibiotic prophylaxis reduces surgical site infections by gram-negative bacteria in instrumented spinal surgery. Eur Spine J 20(Suppl 3):397–402PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Picada R, Winter RB, Lonstein JE, Denis F, Pinto MR, Smith MD, Perra JH (2000) Postoperative deep wound infection in adults after posterior lumbosacral spine fusion with instrumentation: incidence and management. J Spinal Disord 13(1):42–45PubMedCrossRefGoogle Scholar
  15. 15.
    Perry JW, Montgomerie JZ, Swank S, Gilmore DS, Maeder K (1997) Wound infections following spinal fusion with posterior segmental spinal instrumentation. Clin Infect Dis 24(4):558–561PubMedCrossRefGoogle Scholar
  16. 16.
    Banco SP, Vaccaro AR, Blam O, Eck JC, Cotler JM, Hilibrand AS, Albert TJ, Murphey S (2002) Spine infections: variations in incidence during the academic year. Spine 27(9):962–965PubMedCrossRefGoogle Scholar
  17. 17.
    Gruenberg MF, Campaner GL, Sola CA, Ortolan EG (2004) Ultraclean air for prevention of postoperative infection after posterior spinal fusion with instrumentation: a comparison between surgeries performed with and without a vertical exponential filtered air-flow system. Spine 29(20):2330–2334PubMedCrossRefGoogle Scholar
  18. 18.
    Chen S, Anderson MV, Cheng WK, Wongworawat MD (2009) Diabetes associated with increased surgical site infections in spinal arthrodesis. Clin Orthop Relat Res 467(7):1670–1673PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Kim HS, Lee SG, Kim WK, Park CW, Son S (2013) Prophylactic intrawound application of vancomycin powder in instrumented spinal fusion surgery. Korean J Spine 10(3):121–125PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Strom RG, Pacione D, Kalhorn SP, Frempong-Boadu AK (2013) Lumbar laminectomy and fusion with routine local application of vancomycin powder: decreased infection rate in instrumented and non-instrumented cases. Clin Neurol Neurosurg 115(9):1766–1769PubMedCrossRefGoogle Scholar
  21. 21.
    Ohtori S, Suzuki M, Koshi T, Takaso M, Yamashita M, Yamauchi K, Inoue G, Suzuki M, Orita S, Eguchi Y, Ochiai N, Kishida S, Kuniyoshi K, Nakamura J, Aoki Y, Ishikawa T, Arai G, Miyagi M, Kamoda H, Toyone T, Takahashi K (2011) Single-level instrumented posterolateral fusion of the lumbar spine with a local bone graft versus an iliac crest bone graft: a prospective, randomized study with a 2-year follow-up. Eur Spine J 20(4):635–639PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Bhadra AK, Kwiecien GJ, Harwin SF, Johnson AJ, Mont MA, Malkani AL (2012) Procedure simplification: the role of single-use instruments in total knee arthroplasty. Surg Technol Int 22:326–330PubMedGoogle Scholar
  23. 23.
    Mont MA, Johnson AJ, Issa K, Pivec R, Blasser KE, McQueen D, Puri L, Dethmers DA, Miller DW, Ireland PH, Shurman JR, Bonutti P (2013) Single-use instrumentation, cutting blocks, and trials decrease contamination during total knee arthroplasty: a prospective comparison of navigated and non-navigated cases. J Knee Surg 26(4):285–290PubMedCrossRefGoogle Scholar
  24. 24.
    Mont MA, McElroy MJ, Johnson AJ, Pivec R (2013) Single-use instruments, cutting blocks, and trials increase efficiency in the operating room during total knee arthroplasty: a prospective comparison of navigated and non-navigated cases. J Arthroplasty 28(7):1135–1140PubMedCrossRefGoogle Scholar
  25. 25.
    Thienpont E, Bellemans J, Delport H, Van Overschelde P, Stuyts B, Brabants K, Victor J (2013) Patient-specific instruments: industry’s innovation with a surgeon’s interest. Knee Surg Sports Traumatol Arthrosc 21(10):2227–2233PubMedCrossRefGoogle Scholar
  26. 26.
    Morvan G, Mathieu P, Vuillemin V, Guerini H, Bossard P, Zeitoun F, Wybier M (2011) Standardized way for imaging of the sagittal spinal balance. Eur Spine J 20(Suppl 5):602–608PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Fairbank JC, Pynsent PB (2000) The Oswestry Disability Index. Spine 25(22):2940–2952 discussion 2952 PubMedCrossRefGoogle Scholar
  28. 28.
    Anand N, Hamilton JF, Perri B, Miraliakbar H, Goldstein T (2006) Cantilever TLIF with structural allograft and RhBMP2 for correction and maintenance of segmental sagittal lordosis: long-term clinical, radiographic, and functional outcome. Spine 31(20):E748–E753PubMedCrossRefGoogle Scholar
  29. 29.
    Le Huec JC, Charosky S, Barrey C, Rigal J, Aunoble S (2011) Sagittal imbalance cascade for simple degenerative spine and consequences: algorithm of decision for appropriate treatment. Eur Spine J 20(Suppl 5):699–703PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Le Huec JC, Roussouly P (2011) Sagittal spino-pelvic balance is a crucial analysis for normal and degenerative spine. Eur Spine J 20(Suppl 5):556–557PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Nilsson KG, Lundholm R, Friberg S (2010) Assessment of horizontal laminar air flow instrument table for additional ultraclean space during surgery. J Hosp Infect 76(3):243–246PubMedCrossRefGoogle Scholar
  32. 32.
    Sadrizadeh S, Tammelin A, Nielsen PV, Holmberg S (2014) Does a mobile laminar airflow screen reduce bacterial contamination in the operating room? A numerical study using computational fluid dynamics technique. Patient Saf Surg 8:27PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Sossai D, Dagnino G, Sanguineti F, Franchin F (2011) Mobile laminar air flow screen for additional operating room ventilation: reduction of intraoperative bacterial contamination during total knee arthroplasty. J Orthop Traumatol 12(4):207–211PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Amaral AM, Diogo Filho A, Sousa MM, Barbosa PA, Gontijo Filho PP (2013) The importance of protecting surgical instrument tables from intraoperative contamination in clean surgeries. Revista latino-americana de enfermagem 21(1):426–432PubMedCrossRefGoogle Scholar
  35. 35.
    Gaetani P, Aimar E, Panella L, Levi D, Tancioni F, Di Ieva A, Debernardi A, Pisano P, Rodriguez y Baena R (2006) Functional disability after instrumented stabilization in lumbar degenerative spondylolisthesis: a follow-up study. Functional Neurol 21(1):31–37Google Scholar
  36. 36.
    Wu CH, Kao YH, Yang SC, Fu TS, Lai PL, Chen WJ (2008) Supplementary pedicle screw fixation in spinal fusion for degenerative spondylolisthesis in patients aged 65 and over: outcome after a minimum of 2 years follow-up in 82 patients. Acta Orthop 79(1):67–73PubMedCrossRefGoogle Scholar
  37. 37.
    Fritzell P, Hagg O, Wessberg P, Nordwall A (2002) Chronic low back pain and fusion: a comparison of three surgical techniques: a prospective multicenter randomized study from the Swedish lumbar spine study group. Spine 27(11):1131–1141PubMedCrossRefGoogle Scholar
  38. 38.
    Bjarke Christensen F, Stender Hansen E, Laursen M, Thomsen K, Bunger CE (2002) Long-term functional outcome of pedicle screw instrumentation as a support for posterolateral spinal fusion: randomized clinical study with a 5-year follow-up. Spine 27(12):1269–1277PubMedCrossRefGoogle Scholar
  39. 39.
    Dai LY, Jiang LS, Jiang SD (2009) Posterior short-segment fixation with or without fusion for thoracolumbar burst fractures: a five to seven-year prospective randomized study. J Bone Joint Surg 91(5):1033–1041PubMedCrossRefGoogle Scholar
  40. 40.
    Fernandez-Fairen M, Sala P, Ramirez H, Gil J (2007) A prospective randomized study of unilateral versus bilateral instrumented posterolateral lumbar fusion in degenerative spondylolisthesis. Spine 32(4):395–401PubMedCrossRefGoogle Scholar
  41. 41.
    McLain RF, Burkus JK, Benson DR (2001) Segmental instrumentation for thoracic and thoracolumbar fractures: prospective analysis of construct survival and five-year follow-up. Spine J 1(5):310–323PubMedCrossRefGoogle Scholar
  42. 42.
    Tokuhashi Y, Ajiro Y, Umezawa N (2008) Outcomes of posterior fusion using pedicle screw fixation in patients 70 years with lumbar spinal canal stenosis. Orthopedics 31(11):1096PubMedCrossRefGoogle Scholar
  43. 43.
    Abudu A, Sivardeen KA, Grimer RJ, Pynsent PB, Noy M (2002) The outcome of perioperative wound infection after total hip and knee arthroplasty. Int Orthop 26(1):40–43PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Hanssen AD, Rand JA (1999) Evaluation and treatment of infection at the site of a total hip or knee arthroplasty. Instr Course Lect 48:111–122PubMedGoogle Scholar

Copyright information

© Springer-Verlag France 2015

Authors and Affiliations

  • Stéphane Litrico
    • 1
  • Geoffrey Recanati
    • 2
  • Antoine Gennari
    • 1
  • Cédric Maillot
    • 2
  • Mo Saffarini
    • 3
  • Jean-Charles Le Huec
    • 2
    Email author
  1. 1.Department of NeurosurgeryNice University HospitalNiceFrance
  2. 2.Department of Spine Surgery, CHU Pellegrin TripodeBordeaux University HospitalBordeauxFrance
  3. 3.Centre for Health ManagementImperial College LondonLondonUK

Personalised recommendations