Useful animal models for the research of osteoarthritis

  • Kalliopi Lampropoulou-Adamidou
  • Pavlos Lelovas
  • Eleftherios V. Karadimas
  • Chrysoula Liakou
  • Ioannis K. Triantafillopoulos
  • Ismene Dontas
  • Nikolaos A. Papaioannou
General Review


Osteoarthritis (OA) is a major cause of suffering for millions of people. Investigating the disease directly on humans may be challenging. The aim of the present study is to investigate the advantages and limitations of the animal models currently used in OA research. The animal models are divided into induced and spontaneous. Induced models are further subdivided into surgical and chemical models, according to the procedure used to induce OA. Surgical induction of OA is the most commonly used procedure, which alters the exerted strain on the joint and/or alter load bearing leading to instability of the joint and induction of OA. Chemical models are generated by intra-articular injection of modifying factors or by systemically administering noxious agents, such as quinolones. Spontaneous models include naturally occurring and genetic models. Naturally occurring OA is described in certain species, while genetic models are developed by gene manipulation. Overall, there is no single animal model that is ideal for studying degenerative OA. However, in the present review, an attempt is made to clarify the most appropriate use of each model.


Osteoarthritis Experimental osteoarthritis Cartilage Animal model Knee 


Conflict of interest



  1. 1.
    Gore M, Tai KS, Sadosky A, Leslie D, Stacey BR (2011) Clinical comorbidities, treatment patterns, and direct medical costs of patients with osteoarthritis in usual care: a retrospective claims database analysis. J Med Econ 14(4):497–507PubMedGoogle Scholar
  2. 2.
    Vincent TL, Williams RO, Maciewicz R, Silman A, Garside P (2012) Mapping pathogenesis of arthritis through small animal models. Rheumatology (Oxford) 51(11):1931–1941CrossRefGoogle Scholar
  3. 3.
    Abramson SB, Attur M (2009) Developments in the scientific understanding of osteoarthritis. Arthr Res Ther 11(3):227CrossRefGoogle Scholar
  4. 4.
    Teeple E, Jay GD, Elsaid KA, Fleming BC (2013) Animal models of osteoarthritis: challenges of model selection and analysis. AAPS J [Epub ahead of print]Google Scholar
  5. 5.
    Bendele AM (2001) Animal models of osteoarthritis. J Musculoskelet Neuronal Interact 1(4):363–376PubMedGoogle Scholar
  6. 6.
    Frisbie DD, Cross MW, McIlwraith CW (2006) A comparative study of articular cartilage thickness in the stifle of animal species used in human pre-clinical studies compared to articular cartilage thickness in the human knee. Vet Comp Orthop Traumatol 19(3):142–146PubMedGoogle Scholar
  7. 7.
    Giannoni P, Crovace A, Malpeli M, Maggi E, Arbico R, Cancedda R, Dozin B (2005) Species variability in the differentiation potential of in vitro-expanded articular chondrocytes restricts predictive studies on cartilage repair using animal models. Tissue Eng 11(1–2):237–248PubMedCrossRefGoogle Scholar
  8. 8.
    Xerogeanes JW, Fox RJ, Takeda Y, Kim HS, Ishibashi Y, Carlin GJ, Woo SL (1998) A functional comparison of animal anterior cruciate ligament models to the human anterior cruciate ligament. Ann Biomed Eng 26(3):345–352PubMedCrossRefGoogle Scholar
  9. 9.
    Brittberg M, Peterson L (1998) Introduction to an articular cartilage classification. ICRS Newsl 1:8Google Scholar
  10. 10.
    Little CB, Zaki S (2012) What constitutes an “animal model of osteoarthritis”—the need for consensus? Osteoarthr Cartil 20(4):261–267PubMedCrossRefGoogle Scholar
  11. 11.
    Dontas IA (2007) The ethics of animal use in biomedical research.
  12. 12.
    Flecknel P (2009) Analgesia and post-operative care. In: Flecknel P (ed) Laboratory animal anaesthesia, 3rd edn. Academic Press, Amsterdam, pp 139–179CrossRefGoogle Scholar
  13. 13.
    Mapp PI, Avery PS, McWilliams DF, Bowyer J, Day C, Moores S, Webster R, Walsh DA (2008) Angiogenesis in two animal models of osteoarthritis. Osteoarthr Cartil 16(1):61–69PubMedCrossRefGoogle Scholar
  14. 14.
    Batiste DL, Kirkley A, Laverty S, Thain LM, Spouge AR, Holdsworth DW (2004) Ex vivo characterization of articular cartilage and bone lesions in a rabbit ACL transection model of osteoarthritis using MRI and micro-CT. Osteoarthr Cartil 12(12):986–996PubMedCrossRefGoogle Scholar
  15. 15.
    Clements KM, Price JS, Chambers MG, Visco DM, Poole AR, Mason RM (2003) Gene deletion of either interleukin-1beta, interleukin-1beta-converting enzyme, inducible nitric oxide synthase, or stromelysin 1 accelerates the development of knee osteoarthritis in mice after surgical transection of the medial collateral ligament and partial medial meniscectomy. Arthr Rheum 48(12):3452–3463CrossRefGoogle Scholar
  16. 16.
    Berjon JJ, Munuera L, Calvo M (1991) Degenerative lesions in the articular cartilage after meniscectomy: preliminary experimental study in dogs. J Trauma 31(3):342–350PubMedCrossRefGoogle Scholar
  17. 17.
    Roos H, Lauren M, Adalberth T, Roos EM, Jonsson K, Lohmander LS (1998) Knee osteoarthritis after meniscectomy: prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthr Rheum 41(4):687–693CrossRefGoogle Scholar
  18. 18.
    Matsui Y, Iwasaki N, Kon S, Takahashi D, Morimoto J, Denhardt DT, Rittling S, Minami A, Uede T (2009) Accelerated development of aging-associated and instability-induced osteoarthritis in osteopontin-deficient mice. Arthr Rheum 60(8):2362–2371CrossRefGoogle Scholar
  19. 19.
    Hayami T, Pickarski M, Zhuo Y, Wesolowski GA, Rodan GA, le Duong T (2006) Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone 38(2):234–243PubMedCrossRefGoogle Scholar
  20. 20.
    Lindhorst E, Vail TP, Guilak F, Wang H, Setton LA, Vilim V, Kraus VB (2000) Longitudinal characterization of synovial fluid biomarkers in the canine meniscectomy model of osteoarthritis. J Orthop Res 18(2):269–280PubMedCrossRefGoogle Scholar
  21. 21.
    Proffen BL, McElfresh M, Fleming BC, Murray MM (2012) A comparative anatomical study of the human knee and six animal species. Knee 19(4):493–499Google Scholar
  22. 22.
    Pond MJ, Nuki G (1973) Experimentally-induced osteoarthritis in the dog. Ann Rheum Dis 32(4):387–388PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Yoshioka M, Coutts RD, Amiel D, Hacker SA (1996) Characterization of a model of osteoarthritis in the rabbit knee. Osteoarthr Cartil 4(2):87–98PubMedCrossRefGoogle Scholar
  24. 24.
    Frost-Christensen LN, Mastbergen SC, Vianen ME, Hartog A, DeGroot J, Voorhout G, van Wees AM, Lafeber FP, Hazewinkel HA (2008) Degeneration, inflammation, regeneration, and pain/disability in dogs following destabilization or articular cartilage grooving of the stifle joint. Osteoarthr Cartil 16(11):1327–1335PubMedCrossRefGoogle Scholar
  25. 25.
    Kamekura S, Hoshi K, Shimoaka T, Chung U, Chikuda H, Yamada T, Uchida M, Ogata N, Seichi A, Nakamura K, Kawaguchi H (2005) Osteoarthritis development in novel experimental mouse models induced by knee joint instability. Osteoarthr Cartil 13(7):632–641PubMedCrossRefGoogle Scholar
  26. 26.
    Papaioannou NA, Triantafillopoulos IK, Khaldi L, Krallis N, Galanos A, Lyritis GP (2007) Effect of calcitonin in early and late stages of experimentally induced osteoarthritis. A histomorphometric study. Osteoarthr Cartil 15(4):386–395PubMedCrossRefGoogle Scholar
  27. 27.
    Tochigi Y, Vaseenon T, Heiner AD, Fredericks DC, Martin JA, Rudert MJ, Hillis SL, Brown TD, McKinley TO (2011) Instability dependency of osteoarthritis development in a rabbit model of graded anterior cruciate ligament transection. J Bone Joint Surg Am 93(7):640–647PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Sowers MR, McConnell D, Jannausch M, Buyuktur AG, Hochberg M, Jamadar DA (2006) Estradiol and its metabolites and their association with knee osteoarthritis. Arthr Rheum 54(8):2481–2487CrossRefGoogle Scholar
  29. 29.
    Lelovas PP, Xanthos TT, Thoma SE, Lyritis GP, Dontas IA (2008) The laboratory rat as an animal model for osteoporosis research. Comp Med 58(5):424–430PubMedCentralPubMedGoogle Scholar
  30. 30.
    Hoegh-Andersen P, Tanko LB, Andersen TL, Lundberg CV, Mo JA, Heegaard AM, Delaisse JM, Christgau S (2004) Ovariectomized rats as a model of postmenopausal osteoarthritis: validation and application. Arthr Res Ther 6(2):R169–R180CrossRefGoogle Scholar
  31. 31.
    Sniekers YH, Weinans H, Bierma-Zeinstra SM, van Leeuwen JP, van Osch GJ (2008) Animal models for osteoarthritis: the effect of ovariectomy and estrogen treatment—a systematic approach. Osteoarthr Cartil 16(5):533–541PubMedCrossRefGoogle Scholar
  32. 32.
    Ahern BJ, Parvizi J, Boston R, Schaer TP (2009) Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthr Cartil 17(6):705–713PubMedCrossRefGoogle Scholar
  33. 33.
    Mastbergen SC, Marijnissen AC, Vianen ME, van Roermund PM, Bijlsma JW, Lafeber FP (2006) The canine ‘groove’ model of osteoarthritis is more than simply the expression of surgically applied damage. Osteoarthr Cartil 14(1):39–46PubMedCrossRefGoogle Scholar
  34. 34.
    Intema F, DeGroot J, Elshof B, Vianen ME, Yocum S, Zuurmond A, Mastbergen SC, Lafeber FP (2008) The canine bilateral groove model of osteoarthritis. J Orthop Res 26(11):1471–1477PubMedCrossRefGoogle Scholar
  35. 35.
    Anraku Y, Mizuta H, Sei A, Kudo S, Nakamura E, Senba K, Hiraki Y (2009) Analyses of early events during chondrogenic repair in rat full-thickness articular cartilage defects. J Bone Miner Metab 27(3):272–286PubMedCrossRefGoogle Scholar
  36. 36.
    Mrosek EH, Lahm A, Erggelet C, Uhl M, Kurz H, Eissner B, Schagemann JC (2006) Subchondral bone trauma causes cartilage matrix degeneration: an immunohistochemical analysis in a canine model. Osteoarthr Cartil 14(2):171–178PubMedCrossRefGoogle Scholar
  37. 37.
    Bove SE, Calcaterra SL, Brooker RM, Huber CM, Guzman RE, Juneau PL, Schrier DJ, Kilgore KS (2003) Weight bearing as a measure of disease progression and efficacy of anti-inflammatory compounds in a model of monosodium iodoacetate-induced osteoarthritis. Osteoarthr Cartil 11(11):821–830PubMedCrossRefGoogle Scholar
  38. 38.
    Guingamp C, Gegout-Pottie P, Philippe L, Terlain B, Netter P, Gillet P (1997) Mono-iodoacetate-induced experimental osteoarthritis: a dose-response study of loss of mobility, morphology, and biochemistry. Arthr Rheum 40(9):1670–1679CrossRefGoogle Scholar
  39. 39.
    Marker CL, Pomonis JD (2012) The monosodium iodoacetate model of osteoarthritis pain in the rat. Methods Mol Biol 851:239–248PubMedCrossRefGoogle Scholar
  40. 40.
    Schuelert N, McDougall JJ (2009) Grading of monosodium iodoacetate-induced osteoarthritis reveals a concentration-dependent sensitization of nociceptors in the knee joint of the rat. Neurosci Lett 465(2):184–188PubMedCrossRefGoogle Scholar
  41. 41.
    McDougall JJ, Pawlak M, Hanesch U, Schmidt RF (2000) Peripheral modulation of rat knee joint afferent mechanosensitivity by nociceptin/orphanin FQ. Neurosci Lett 288(2):123–126PubMedCrossRefGoogle Scholar
  42. 42.
    Chandran P, Pai M, Blomme EA, Hsieh GC, Decker MW, Honore P (2009) Pharmacological modulation of movement-evoked pain in a rat model of osteoarthritis. Eur J Pharmacol 613(1–3):39–45PubMedCrossRefGoogle Scholar
  43. 43.
    Miyauchi S, Machida A, Onaya J, Sakamoto T, Tokuyasu K, Iwata H (1993) Alterations of proteoglycan synthesis in rabbit articular cartilage induced by intra-articular injection of papain. Osteoarthr Cartil 1(4):253–262PubMedCrossRefGoogle Scholar
  44. 44.
    van der Kraan PM, Vitters EL, van de Putte LB, van den Berg WB (1989) Development of osteoarthritic lesions in mice by “metabolic” and “mechanical” alterations in the knee joints. Am J Pathol 135(6):1001–1014PubMedCentralPubMedGoogle Scholar
  45. 45.
    Schunke M, Tillmann B, Bruck M, Muller-Ruchholtz W (1988) Morphologic characteristics of developing osteoarthrotic lesions in the knee cartilage of STR/IN mice. Arthr Rheum 31(7):898–905CrossRefGoogle Scholar
  46. 46.
    Sendzik J, Lode H, Stahlmann R (2009) Quinolone-induced arthropathy: an update focusing on new mechanistic and clinical data. Int J Antimicrob Agents 33(3):194–200PubMedCrossRefGoogle Scholar
  47. 47.
    Bendele AM, Hulman JF (1988) Spontaneous cartilage degeneration in guinea pigs. Arthr Rheum 31(4):561–565CrossRefGoogle Scholar
  48. 48.
    McDougall JJ, Andruski B, Schuelert N, Hallgrimsson B, Matyas JR (2009) Unravelling the relationship between age, nociception and joint destruction in naturally occurring osteoarthritis of Dunkin Hartley guinea pigs. Pain 141(3):222–232PubMedCrossRefGoogle Scholar
  49. 49.
    Liu W, Burton-Wurster N, Glant TT, Tashman S, Sumner DR, Kamath RV, Lust G, Kimura JH, Cs-Szabo G (2003) Spontaneous and experimental osteoarthritis in dog: similarities and differences in proteoglycan levels. J Orthop Res 21(4):730–737PubMedCrossRefGoogle Scholar
  50. 50.
    Carlson CS, Loeser RF, Purser CB, Gardin JF, Jerome CP (1996) Osteoarthritis in cynomolgus macaques. III: effects of age, gender, and subchondral bone thickness on the severity of disease. J Bone Miner Res 11(9):1209–1217PubMedCrossRefGoogle Scholar
  51. 51.
    Regan E, Flannelly J, Bowler R, Tran K, Nicks M, Carbone BD, Glueck D, Heijnen H, Mason R, Crapo J (2005) Extracellular superoxide dismutase and oxidant damage in osteoarthritis. Arthr Rheum 52(11):3479–3491CrossRefGoogle Scholar
  52. 52.
    Saamanen AK, Salminen HJ, Dean PB, De Crombrugghe B, Vuorio EI, Metsaranta MP (2000) Osteoarthritis-like lesions in transgenic mice harboring a small deletion mutation in type II collagen gene. Osteoarthr Cartil 8(4):248–257PubMedCrossRefGoogle Scholar
  53. 53.
    Morko J, Kiviranta R, Joronen K, Saamanen AM, Vuorio E, Salminen-Mankonen H (2005) Spontaneous development of synovitis and cartilage degeneration in transgenic mice overexpressing cathepsin K. Arthr Rheum 52(12):3713–3717CrossRefGoogle Scholar
  54. 54.
    Neuhold LA, Killar L, Zhao W, Sung ML, Warner L, Kulik J, Turner J, Wu W, Billinghurst C, Meijers T, Poole AR, Babij P, DeGennaro LJ (2001) Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. J Clin Invest 107(1):35–44PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2013

Authors and Affiliations

  • Kalliopi Lampropoulou-Adamidou
    • 1
    • 2
  • Pavlos Lelovas
    • 2
  • Eleftherios V. Karadimas
    • 2
  • Chrysoula Liakou
    • 2
  • Ioannis K. Triantafillopoulos
    • 2
  • Ismene Dontas
    • 2
  • Nikolaos A. Papaioannou
    • 2
  1. 1.3rd Orthopaedic Department, Faculty of Medicine, School of Health Sciences, KAT HospitalUniversity of AthensAthensGreece
  2. 2.Laboratory for Research of the Musculoskeletal System “Th. Garofalidis”, Faculty of Medicine, School of Health Sciences, KAT HospitalUniversity of AthensAthensGreece

Personalised recommendations