Is platelet-rich plasma able to enhance the results of arthroscopic microfracture in early osteoarthritis and cartilage lesion over 40 years of age?

  • Gun Woo Lee
  • Jung-Hwan Son
  • Jae-Do Kim
  • Gu-Hee Jung
Original Article


Most studies suggested that arthroscopic microfracture is effective method at only less than 40 years of age. Thus, the authors thought that “how can this indication regarding age be extended?,” and tried to find a way to use this technique effectively over 40 years of age. The aim of this study was the first to report the results regarding the PRP as an adjunct for arthroscopic microfracture in the early osteoarthritic (OA) knee with cartilage lesion over 40 years of age. 49 patients who underwent arthroscopic microfracture for cartilage lesion sized less than 4 cm2 with early OA, aged 40–50 years, were enrolled and randomly divided into 2 groups: a control group with only arthroscopic microfracture (25 patients) and a study group with arthroscopic microfracture and PRP (24 patients). The patients were prospectively evaluated with VAS, IKDC score at preoperative and postoperative 1, 6, 12, and 24 months. And we perform second arthroscopies in 10 patients of each group to identify the extent of cartilage restoration at 4–6 months postoperatively. There were significant improvements in clinical results between preoperative evaluation and postoperative 2 years in both groups (p = 0.017). In the postoperative 2 years, clinical results showed significantly better in the study group than in the control group (p = 0.012). In post-arthroscopic finding, hardness and elasticity degree was better in the study group. The PRP injection with arthroscopic microfracture would be improved the results in early osteoarthritic knee with cartilage lesion in 40–50 years old, and the indication of this technique could be extended to 50 years.


Platelet-rich plasma Microfracture Cartilage lesion Osteoarthritis Knee 



We thank Choong-Kyu Kim, M.D., Jae-Man Kwak, M.D., and Hyun-Ik Cho, M.D. for technical assistance.

Conflict of interest

The authors declared no potential conflicts of interest with respect to the authorship and/or publication of this article. And the authors received no financial support for the research and/or authorship of this article.


  1. 1.
    Williams RJ III, Harnly HW (2007) Microfracture: indications, technique, and results. Instr Course Lect 56:419–428PubMedGoogle Scholar
  2. 2.
    Breinan HA, Martin SD, Hsu HP, Spector M (2000) Healing of canine articular cartilage defects treated with microfracture, a type-II collagen matrix, or cultured autologous chondrocytes. J Orthop Res 18:781–789PubMedCrossRefGoogle Scholar
  3. 3.
    Tran-Khanh N, Hoemann CD, McKee MD, Henderson JE, Buschmann MD (2005) Aged bovine chondrocytes display a diminished capacity to produce a collagen-rich, mechanically functional cartilage extracellular matrix. J Orthop Res 23:1354–1362PubMedCrossRefGoogle Scholar
  4. 4.
    Frisbie DD, Oxford JT, Southwood L, Trotter GW, Rodkey WG, Steadman JR et al (2003) Early events in cartilage repair after subchondral bone microfracture. Clin Orthop Relat Res 407:215–227PubMedCrossRefGoogle Scholar
  5. 5.
    Bae DK, Yoon KH, Song SJ (2006) Cartilage healing after microfracture in osteoarthritic knees. Arthroscopy 22:367–374PubMedCrossRefGoogle Scholar
  6. 6.
    Gudas R, Kalesinskas RJ, Kimtys V, Stankevicius E, Toliusis V, Bernotavicius G et al (2005) A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy 21:1066–1075PubMedCrossRefGoogle Scholar
  7. 7.
    Bae DK, Yoon KH, Song SJ, Noh JH, Km MH (2008) Midterm clinical and radiologic results after microfracture in osteoarthritic knees. J Kor Orthop Assoc 43:752–759CrossRefGoogle Scholar
  8. 8.
    Kon E, Buda R, Filardo G, Di Martino A, Timoncini A, Cenacchi A et al (2010) Platelet-rich plasma: intra-articular knee injections produced favorable results on degenerative cartilage lesions. Knee Surg Sports Traumatol Arthrosc 18:472–479PubMedCrossRefGoogle Scholar
  9. 9.
    Akeda K, An HS, Okuma M, Attawia M, Miyamoto K, Thonar EJ et al (2006) Platelet-rich plasma stimulates porcine articular chondrocyte proliferation and matrix biosynthesis. Osteoarthr Cartilage 14(12):1272–1280CrossRefGoogle Scholar
  10. 10.
    O’Keefe RJ, Crabb ID, Puzas JE, Rosier RN (1994) Effects of transforming growth factor-beta 1 and fibroblast growth factor on DNA synthesis in growth plate chondrocytes are enhanced by insulin-like growth factor-I. J Orthop Res 12(3):299–310PubMedCrossRefGoogle Scholar
  11. 11.
    Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502PubMedCrossRefGoogle Scholar
  12. 12.
    Ogilvie-Harris DJ, Fitsialos DP (1991) Arthroscopic management of the degenerative knee. Arthroscopy 7:151–157PubMedCrossRefGoogle Scholar
  13. 13.
    Steadman JR, Rodkey WG, Briggs KK, Rodrigo JJ (1999) The microfracture technique in the management of complete cartilage defects in the knee joint. Orthopade 28:26–32PubMedGoogle Scholar
  14. 14.
    Steadman JR, Miller BS, Karas SG, Schlegel TF, Briggs KK, Hawkins RJ (2003) The microfracture technique in the treatment of full-thickness chondral lesions of the knee in National Football League players. J Knee Surg 16:83–86PubMedGoogle Scholar
  15. 15.
    Gill TJ, Asnis PD, Berkson EM (2006) The treatment of articular cartilage defects using the microfracture technique. J Orthop Sports Phys Ther 36:728–738PubMedGoogle Scholar
  16. 16.
    Mithoefer K, Williams RJ, Warren RF, Potter HG, Spock CR, Jones EC et al (2005) The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Am 87:1911–1920PubMedCrossRefGoogle Scholar
  17. 17.
    Caplan AI (1987) Bone development and repair. BioEssays 6(4):171–175PubMedCrossRefGoogle Scholar
  18. 18.
    Mithoefer K, Scopp JM, Mandelbaum BR (2007) Articular cartilage repair in athletes. Instr Course Lect 56:457–468PubMedGoogle Scholar
  19. 19.
    Berlet GC, Mascia A, Miniaci A (1999) Treatment of unstable osteochondritis dissecans lesions of the knee using autogenous osteochondral grafts (mosaicplasty). Arthroscopy 15:312–316PubMedCrossRefGoogle Scholar
  20. 20.
    Miniaci A, Tytherleigh-Strong G (2007) Fixation of unstable osteochondritis dissecans lesions of the knee using arthroscopic autogenous osteochondral grafting (mosaicplasty). Arthroscopy 23:845–851PubMedCrossRefGoogle Scholar
  21. 21.
    Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG (2003) Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 19:477–484PubMedCrossRefGoogle Scholar
  22. 22.
    Lohmann CH, Schwartz Z, Niederauer GG, Carnes DL, Dean DD, Boyan BD (2000) Pretreatment with platelet derived growth factor-BB modulates the ability of costochondral resting zone chondrocytes incorporated into PLA/PGA scaffolds to form new cartilage in vivo. Biomaterials 21:49–61PubMedCrossRefGoogle Scholar
  23. 23.
    Gudas R, Stankevicius E, Monastyreckiene E, Pranys D, Kalesinkskas R (2006) Osteochondral autologous transplantation versus microfracture for the treatment of articular cartilage defects in the knee joint in athletes. Knee Surg Sports Traumatol Arthrosc 14:834–842PubMedCrossRefGoogle Scholar
  24. 24.
    Grigolo B, Roseti L, Fiorini M, Fini M, Giavaresi G, Aldini N, Giardino R et al (2001) Transplantation of chondrocytes seeded on a hyaluronan derivative (hyaff-11) into cartilage defects in rabbits. Biomaterials 22:2417–2424PubMedCrossRefGoogle Scholar
  25. 25.
    Solchaga LA, Dennis JE, Goldberg VM, Caplan AI (1999) Hyaluronic acid-based polymers as cell carriers for tissueengineered repair of bone and cartilage. J Orthop Res 17:205–213PubMedCrossRefGoogle Scholar
  26. 26.
    Solchaga LA, Yoo JU, Lundberg M, Dennis JE, Huibregtse BA, Goldberg VM, Caplan AI (2000) Hyaluronan-based polymers in the treatment of osteochondral defects. J Orthop Res 18:773–780PubMedCrossRefGoogle Scholar
  27. 27.
    Steinwachs M, Kreuz PC (2007) Autologous chondrocyte implantation in chondral defects of the knee with a type I/III collagen membrane: a prospective study with a 3-year follow-up. Arthroscopy 23:381–387PubMedCrossRefGoogle Scholar
  28. 28.
    Lauder SN, Carty SM, Carpenter CE, Hill RJ, Talamas F, Bondeson J et al (2007) Interleukin-1 induced activation of nuclear factor-B can be inhibited by novel pharmacological agents in osteoarthritis. Rheumatology (Oxford) 46:752–758CrossRefGoogle Scholar
  29. 29.
    Schmidt MB, Chen EH, Lynch SE (2005) A review of the effects of insulin-like growth factor and platelet-derived growth factor on in vivo cartilage healing and repair. Ostearthr Cartilage 14:403–412CrossRefGoogle Scholar
  30. 30.
    Grigolo B, Lisignoli G, Piacentini A, Fiorini M, Gobbi P, Mazzotti G et al (2003) Evidence for redifferentiation of human chondrocytes grown on a hyaluronan-based biomaterial (HYAff 11): molecular, immunohistochemical and ultrastructural analysis. Biomaterials 23:1187–1195CrossRefGoogle Scholar
  31. 31.
    Sun Y, Feng Y, Zhang CQ, Chen SB, Cheng XG (2010) The regenerative effect of platelet-rich plasma on healing in large osteochondral defects. Int Orthop 34(4):589–597PubMedCrossRefGoogle Scholar
  32. 32.
    Mishra A, Tummala P, King A, Lee B, Kraus M, Tse V et al (2009) Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation. Tissue Eng Part C Methods 15:431–435PubMedCrossRefGoogle Scholar
  33. 33.
    Lee DC, Sohn OJ, Sung MC (2009) A comparison of clinical outcomes after osteochondral autologous transplantation & arthroscopic microfracture surgery for treating of osteochondral lesions of the knee. J Kor Orthop Assoc 44:320–328CrossRefGoogle Scholar
  34. 34.
    Solheim E, Oyen J, Hegna J, Austgulen OK, Harlem T, Strand T (2010) Microfracture treatment of single or multiple articular cartilage defects of the knee: a 5-year median follow-up of 110 patients. Knee Surg Sports Traumatol Arthrosc 18:504–508PubMedCrossRefGoogle Scholar
  35. 35.
    Asik M, Ciftci F, Sen C, Erdil M, Atalar A (2008) The microfracture technique for the treatment of full-thickness articular cartilage lesions of the knee: midterm results. Arthroscopy 24(11):1214–1220PubMedCrossRefGoogle Scholar
  36. 36.
    Gobbi A, Nunag P, Malinowski K (2005) Treatment of full thickness chondral lesions of the knee with microfracture in a group of athletes. Knee Surg Sports Traumatol Arthrosc 13:213–221PubMedCrossRefGoogle Scholar
  37. 37.
    Namdari S, Baldwin K, Anakwenze O, Park M, Huffman G, Sennett B (2009) Results and performance after microfracture in National Basketball Association athletes. Am J Sports Med 37:943–949PubMedCrossRefGoogle Scholar
  38. 38.
    Mithoefer K, Williams RJ III, Warren RF, Wickiewicz TL, Marx RG (2006) High-impact athletics after knee articular cartilage repair: a prospective evaluation of the microfracture technique. Am J Sports Med 34:1413–1418PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Gun Woo Lee
    • 1
  • Jung-Hwan Son
    • 1
  • Jae-Do Kim
    • 1
  • Gu-Hee Jung
    • 1
  1. 1.Kosin University Gospel HospitalBusanRepublic of Korea

Personalised recommendations