Skip to main content

Advertisement

Log in

Subclinical infection can be an initiator of inflammaging leading to degenerative disk disease: evidence from host-defense response mechanisms

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

There is considerable controversy on the role of genetics, mechanical and environmental factors, and, recently, on subclinical infection in triggering inflammaging leading to disk degeneration. The present study investigated sequential molecular events in the host, analyzing proteome level changes that will reveal triggering factors of inflammaging and degeneration.

Methods

Ten MRI normal disks (ND) from braindead organ donors and 17 degenerated disks (DD) from surgery were subjected to in-gel-based label-free ESI-LC–MS/MS analysis. Bacterial-responsive host-defense response proteins/pathways leading to Inflammaging were identified and compared between ND and DD.

Results

Out of the 263 well-established host-defense response proteins (HDRPs), 243 proteins were identified, and 64 abundantly expressed HDRPs were analyzed further. Among the 21 HDRPs common to both ND and DD, complement factor 3 (C3) and heparan sulfate proteoglycan 2 (HSPG2) were significantly upregulated, and lysozyme (LYZ), superoxide dismutase 3 (SOD3), phospholipase-A2 (PLA2G2A), and tissue inhibitor of metalloproteinases 3 (TIMP-3) were downregulated in DD. Forty-two specific HDRPs mainly, complement proteins, apolipoproteins, and antimicrobial proteins involved in the complement cascade, neutrophil degranulation, and oxidative-stress regulation pathways representing an ongoing host response to subclinical infection and uncontrolled inflammation were identified in DD. Protein–Protein interaction analysis revealed cross talk between most of the expressed HDRPs, adding evidence to bacterial presence and stimulation of these defense pathways.

Conclusions

The predominance of HDRPs involved in complement cascades, neutrophil degranulation, and oxidative-stress regulation indicated an ongoing infection mediated inflammatory process in DD. Our study has documented increasing evidence for bacteria’s role in triggering the innate immune system leading to chronic inflammation and degenerative disk disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A1BG:

Alpha 1b glycoprotein

AMPs:

Antimicrobial proteins

ANIMO:

Analysis of Networks with Interactive MOdeling

APCS:

Serum amyloid P component

ARHGAP5:

Rho GTPase activating protein 5

AZU1:

Azurocidin

BRAF:

Proto-oncogene-B-rapidly accelerated fibrosarcoma

C3:

Complement component C3

C5:

Complement component C5

CA2:

Carbonic Anhydrase 2

CAMP:

Cathelicidin–antimicrobial–peptide

CAT:

Catalase

CFD:

Complement factor D

CFH:

Complement factor H

CHI3L1:

Chitinase–3–like–protein–1

CLR:

C-type lectin receptors

CLU:

Clusterin

CTSG:

Cathepsin G

DAMPs:

Disease-associated molecular patterns

DCD:

Dermcidin

DD:

Degenerated disks

DDD:

Degenerative disk disease

DEFA1:

Defensin–Alpha 1

ECM:

Extracellular matrix

ESI:

Electrospray ionization

GOnet:

Interactive tool for gene ontology analysis

HDRP:

Host-defense response proteins

HP:

Haptoglobin

HSPA8:

Heat shock 70 kDa protein A8

HSPG2:

Heparan sulfate proteoglycan 2/perlecan

ICMR:

Indian Council of Medical Research

IFN-γ:

Interferon gamma

IGHM:

Immunoglobulin heavy constant mu

IL-6:

Interleukin 6

IRB:

Institutional review Board

LC:

Liquid chromatography

LCN2:

Lipocalin 2

LGALS8:

Galectin 8

LL-37:

Active Form of CAMP precursor

LPS:

Lipopolysaccharide

LTA:

Lipoteichoic acid

LTF:

Lactotransferrin

LYZ:

Lysozyme

MAC:

Membrane attack complex

MAPK:

Mitogen–Activated protein kinase

MCP1:

Monocyte chemoattractant protein-1

MCP3:

Monocyte chemotactic protein 3

MPO:

Myeloperoxidase

MRI:

Magnetic resonance imaging

MS/MS:

Tandem mass spectrometry

ND:

Normal disks

NK cells:

Natural killer cells

NLR:

NOD-like receptors

NOD:

Nucleotide–binding oligomerization domain

PAMPs:

Pathogen-associated molecular patterns

PANTHER:

Protein annotation through evolutionary relationship

PGN:

Peptidoglycan

PLA2G2A:

Synovial phospholipase A2

PPI:

Protein–protein interaction

PRDX1:

Peroxiredoxin 1

PRDX2:

Peroxiredoxin 2

PRDX6:

Peroxiredoxin 6

PRR:

Pattern recognition receptors

PSM:

Peptide spectral match

RAF:

Rapidly accelerated fibrosarcoma

RAS:

Rat sarcoma

Reactome:

A database of reactions, pathways and biological processes

RLR:

Retinoic acid-inducible gene 1 like receptors

SOD3:

Extracellular superoxide dismutase

STRING:

Search tool for the retrieval of interacting genes/proteins

TCC:

Terminal complement complex

TIMP3:

Tissue inhibitor of metalloproteinase 3

TLR:

Toll–Like receptors

TNC:

Tenascin C

TNFAIP6:

Tumor necrosis factor-inducible gene 6 protein

TNFα:

Tumor necrosis factor alpha or cachexin, or cachectin

UPPAAL:

Tool for interactive modeling

References

  1. Rajasekaran S, Tangavel C, KS, SVA et al (2020) Inflammaging determines health and disease in lumbar discs-evidence from differing proteomic signatures of healthy, aging, and degenerating discs. Spine J Off J North Am Spine Soc 20:48–59. https://doi.org/10.1016/j.spinee.2019.04.023

    Article  CAS  Google Scholar 

  2. Sadowska A, Touli E, Hitzl W et al (2018) Inflammaging in cervical and lumbar degenerated intervertebral discs: analysis of proinflammatory cytokine and TRP channel expression. Eur Spine J Off PublEur Spine SocEur Spinal Deform SocEur Sect Cerv Spine Res Soc 27:564–577. https://doi.org/10.1007/s00586-017-5360-8

    Article  Google Scholar 

  3. Capoor MN, Birkenmaier C, Wang JC et al (2019) A review of microscopy-based evidence for the association of propionibacterium acnes biofilms in degenerative disc disease and other diseased human tissue. Eur Spine J 28:2951–2971. https://doi.org/10.1007/s00586-019-06086-y

    Article  PubMed  Google Scholar 

  4. Ohrt-Nissen S, Fritz BG, Walbom J et al (2018) Bacterial biofilms: a possible mechanism for chronic infection in patients with lumbar disc herniation—a prospective proof-of-concept study using fluorescence in situ hybridization. APMIS 126:440–447. https://doi.org/10.1111/apm.12841

    Article  CAS  PubMed  Google Scholar 

  5. Urquhart DM, Zheng Y, Cheng AC et al (2015) Could low grade bacterial infection contribute to low back pain? A syst rev BMC Med 13:13. https://doi.org/10.1186/s12916-015-0267-x

    Article  Google Scholar 

  6. Rajasekaran S, Tangavel C, Aiyer SN et al (2017) ISSLS PRIZE IN CLINICAL SCIENCE 2017: is infection the possible initiator of disc disease? An insight from proteomic analysis. Eur Spine J OffPublEur Spine SocEur Spinal Deform SocEur Sect Cerv Spine Res Soc 26:1384–1400. https://doi.org/10.1007/s00586-017-4972-3

    Article  CAS  Google Scholar 

  7. Lin Y, Tang G, Jiao Y et al (2018) Propionibacterium acnes Induces intervertebral disc degeneration by promoting iNOS/NO and COX-2/PGE2 activation via the ROS-dependent NF-κB pathway. Oxid Med Cell Longev. https://doi.org/10.1155/2018/3692752

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rao PJ, Maharaj M, Chau C et al (2020) Degenerate-disc infection study with contaminant control (DISC): a multicenter prospective case-control trial. Spine J Off J North Am Spine Soc 20:1544–1553. https://doi.org/10.1016/j.spinee.2020.03.013

    Article  Google Scholar 

  9. Fritzell P, Welinder-Olsson C, Jönsson B et al (2019) Bacteria: back pain, leg pain and Modic sign-a surgical multicentre comparative study. Eur Spine J Off PublEur Spine SocEur Spinal Deform SocEur Sect Cerv Spine Res Soc 28:2981–2989. https://doi.org/10.1007/s00586-019-06164-1

    Article  Google Scholar 

  10. Rajasekaran S, Soundararajan DCR, Tangavel C et al (2020) Human intervertebral discs harbour a unique microbiome and dysbiosis determines health and disease. Eur Spine J Off PublEur Spine SocEur Spinal Deform SocEur Sect Cerv Spine Res Soc 29:1621–1640. https://doi.org/10.1007/s00586-020-06446-z

    Article  Google Scholar 

  11. Zybailov B, Mosley AL, Sardiu ME et al (2006) Statistical analysis of membrane proteome expression changes in saccharomyces cerevisiae. J Proteome Res 5:2339–2347. https://doi.org/10.1021/pr060161n

    Article  CAS  PubMed  Google Scholar 

  12. Beck WHJ, Adams CP, Biglang-awa IM et al (2013) Apolipoprotein A-I binding to anionic vesicles and lipopolysaccharides: Role for lysine residues in antimicrobial properties. BiochimBiophysActa BBA - Biomembr 1828:1503–1510. https://doi.org/10.1016/j.bbamem.2013.02.009

    Article  CAS  Google Scholar 

  13. Onat A, Hergenç G, Ayhan E et al (2009) Impaired anti-inflammatory function of apolipoprotein A-II concentrations predicts metabolic syndrome and diabetes at 4 years follow-up in elderly Turks. ClinChem Lab Med 47:1389–1394. https://doi.org/10.1515/CCLM.2009.310

    Article  CAS  Google Scholar 

  14. Sturm E, Roula D, Theiler A et al (2019) Apolipoprotein A-IV is reduced in serum of allergic patients and acts as an endogenous anti-inflammatory protein. EurRespir J. https://doi.org/10.1183/13993003.congress-2019.OA1625

    Article  Google Scholar 

  15. Gaglione R, Cesaro A, Dell’Olmo E et al (2019) Effects of human antimicrobial cryptides identified in apolipoprotein B depend on specific features of bacterial strains. Sci Rep 9:6728. https://doi.org/10.1038/s41598-019-43063-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee JY, Kang MJ, Choi JY et al (2018) Apolipoprotein B binds to enolase-1 and aggravates inflammation in rheumatoid arthritis. Ann Rheum Dis 77:1480–1489. https://doi.org/10.1136/annrheumdis-2018-213444

    Article  CAS  PubMed  Google Scholar 

  17. Crespo-Sanjuán J, Zamora-Gonzalez N, Calvo-Nieves M, Andres-Ledesma C (2017) Apolipoprotein D

  18. Zhang H, Wu L-M, Wu J (2011) Cross-Talk between Apolipoprotein E and Cytokines. In: Mediators Inflamm. https://www.hindawi.com/journals/mi/2011/949072/. Accessed 16 Oct 2020

  19. Kloske CM, Wilcock DM (2020) The important interface between apolipoprotein E and Neuroinflammation in Alzheimer’s Disease. Front Immunol. https://doi.org/10.3389/fimmu.2020.00754

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tschopp J, Chonn A, Hertig S, French LE (1993) Clusterin, the human apolipoprotein and complement inhibitor, binds to complement C7, C8 beta, and the b domain of C9. J Immunol 151:2159–2165

    CAS  PubMed  Google Scholar 

  21. Vanwalleghem G, Fontaine F, Lecordier L et al (2015) Coupling of lysosomal and mitochondrial membrane permeabilization in trypanolysis by APOL1. Nat Commun 6:8078. https://doi.org/10.1038/ncomms9078

    Article  CAS  PubMed  Google Scholar 

  22. Viennois E, Baker MT, Xiao B et al (2015) Longitudinal study of circulating protein biomarkers in inflammatory bowel disease. J Proteomics 112:166–179. https://doi.org/10.1016/j.jprot.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  23. Liu C-C, Ahearn JM (2005) Chapter 10—acute-phase proteins and inflammation: immunological and clinical implications. In: Lotze MT, Thomson AW (eds) Measuring Immunity. Academic Press, London, pp 131–143

    Chapter  Google Scholar 

  24. Huang B, Chen J, Zhang X et al (2019) Alpha 2-macroglobulin as dual regulator for both anabolism and catabolism in the cartilaginous endplate of Intervertebral Disc. Spine 44:E338–E347. https://doi.org/10.1097/BRS.0000000000002852

    Article  PubMed  Google Scholar 

  25. Yang Y, Liu G, He Q et al (2019) A Promising Candidate: Heparin-Binding Protein Steps onto the Stage of Sepsis Prediction. In: J. Immunol. Res. https://www.hindawi.com/journals/jir/2019/7515346/. Accessed 16 Oct 2020.

  26. Gao S, Zhu H, Zuo X, LUO H (2018) Cathepsin G and Its role in inflammation and autoimmune diseases. Arch Rheumatol 33:498–504. https://doi.org/10.5606/ArchRheumatol.2018.6595

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu PT, Stenger S, Li H et al (2006) Toll-Like receptor triggering of a vitamin D-Mediated human antimicrobial response. Science 311:1770–1773. https://doi.org/10.1126/science.1123933

    Article  CAS  PubMed  Google Scholar 

  28. Ghosh S, Stepicheva N, Yazdankhah M et al (2020) The role of lipocalin-2 in age-related macular degeneration (AMD). Cell Mol Life Sci 77:835–851. https://doi.org/10.1007/s00018-019-03423-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Teixeira GQ, Yong Z, Goncalves RM et al (2020) Terminal complement complex formation is associated with intervertebral disc degeneration. Eur Spine J. https://doi.org/10.1007/s00586-020-06592-4

    Article  PubMed  Google Scholar 

  30. Catalase Enhances Viability of Human Chondrocytes in Culture by Reducing Reactive Oxygen Species and Counteracting Tumor Necrosis Factor-α-Induced Apoptosis—PubMed. https://pubmed.ncbi.nlm.nih.gov/30261500/. Accessed 17 Oct 2020

  31. Sly WS, Hewett-Emmett D, Whyte MP et al (1983) Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. ProcNatlAcadSci 80:2752–2756. https://doi.org/10.1073/pnas.80.9.2752

    Article  CAS  Google Scholar 

  32. Chandramohanadas R, Davis PH, Beiting DP et al (2009) Apicomplexan parasites co-opt host calpains to facilitate their escape from infected cells. Science 324:794–797. https://doi.org/10.1126/science.1171085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Akhatib B, Önnerfjord P, Gawri R et al (2013) Chondroadherin fragmentation mediated by the protease HTRA1 distinguishes human intervertebral disc degeneration from normal aging. J BiolChem 288:19280–19287. https://doi.org/10.1074/jbc.M112.443010

    Article  CAS  Google Scholar 

  34. Kim JY, Han Y, Lee JE, Yenari MA (2018) The 70-kDa heat shock protein (Hsp70) as a therapeutic target for stroke. Expert OpinTher Targets 22:191–199. https://doi.org/10.1080/14728222.2018.1439477

    Article  CAS  Google Scholar 

  35. Rosenzweig SD, Holland SM (2016) 11 - Defects of Innate immunity. In: Leung DYM, Szefler SJ, Bonilla FA et al (eds) Pediatric Allergy: Principles and Practice, 3rd edn. Elsevier, London, pp 101-111.e3

    Chapter  Google Scholar 

  36. Ding C, Fan X, Wu G (2017) Peroxiredoxin 1 – an antioxidant enzyme in cancer. J Cell Mol Med 21:193–202. https://doi.org/10.1111/jcmm.12955

    Article  CAS  PubMed  Google Scholar 

  37. Salzano S, Checconi P, Hanschmann E-M et al (2014) Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. ProcNatlAcadSci U S A 111:12157–12162. https://doi.org/10.1073/pnas.1401712111

    Article  CAS  Google Scholar 

  38. Arevalo JA, Vázquez-Medina JP (2018) The role of Peroxiredoxin 6 in cell signaling. Antioxidants. https://doi.org/10.3390/antiox7120172

    Article  PubMed  PubMed Central  Google Scholar 

  39. Feng C, Yang M, Lan M, et al (2017) ROS: Crucial Intermediators in the Pathogenesis of Intervertebral Disc Degeneration. In: Oxid. Med. Cell. Longev. https://www.hindawi.com/journals/omcl/2017/5601593/. Accessed 28 Sep 2020.

  40. Wang S, Song R, Wang Z et al (2018) S100A8/A9 in inflammation. Front Immunol. https://doi.org/10.3389/fimmu.2018.01298

    Article  PubMed  PubMed Central  Google Scholar 

  41. Muñoz L, Borrero M-J, Úbeda M et al (2019) Intestinal immune dysregulation driven by dysbiosis promotes barrier disruption and bacterial translocation in rats with cirrhosis. HepatolBaltimMd 70:925–938. https://doi.org/10.1002/hep.30349

    Article  CAS  Google Scholar 

  42. Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J GerontolABiolSci Med Sci 69(Suppl 1):S4-9. https://doi.org/10.1093/gerona/glu057

    Article  Google Scholar 

  43. van Dijk A, Hedegaard CJ, Haagsman HP, Heegaard PMH (2018) The potential for immunoglobulins and host defense peptides (HDPs) to reduce the use of antibiotics in animal production. Vet Res 49:68. https://doi.org/10.1186/s13567-018-0558-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tang D, Kang R, Coyne CB et al (2012) PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 249:158–175. https://doi.org/10.1111/j.1600-065X.2012.01146.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sansonetti PJ (2011) To be or not to be a pathogen: that is the mucosally relevant question. Mucosal Immunol 4:8–14. https://doi.org/10.1038/mi.2010.77

    Article  CAS  PubMed  Google Scholar 

  46. Harder J, Gläser R, Schröder J-M (2007) Human antimicrobial proteins effectors of innate immunity. J Endotoxin Res 13:317–338. https://doi.org/10.1177/0968051907088275

    Article  CAS  PubMed  Google Scholar 

  47. Zhang H, Kim JK, Edwards CA et al (2005) Clusterin inhibits apoptosis by interacting with activated Bax. Nat Cell Biol 7:909–915. https://doi.org/10.1038/ncb1291

    Article  CAS  PubMed  Google Scholar 

  48. Zuo L, Prather ER, Stetskiv M et al (2019) Inflammaging and oxidative stress in human diseases: from molecular mechanisms to novel treatments. Int J MolSci. https://doi.org/10.3390/ijms20184472

    Article  Google Scholar 

  49. Madera L, Ma S, Hancock REW (2011) Host defense (Antimicrobial) peptides and proteins. Immune Response Infect. https://doi.org/10.1128/9781555816872.ch4

    Article  Google Scholar 

  50. Mookherjee N, Hamill P, Gardy J et al (2009) Systems biology evaluation of immune responses induced by human host defence peptide LL-37 in mononuclear cells. MolBiosyst 5:483–496. https://doi.org/10.1039/b813787k

    Article  CAS  Google Scholar 

  51. Bachmeier BE, Nerlich A, Mittermaier N et al (2009) Matrix metalloproteinase expression levels suggest distinct enzyme roles during lumbar disc herniation and degeneration. Eur Spine J 18:1573–1586. https://doi.org/10.1007/s00586-009-1031-8

    Article  PubMed  PubMed Central  Google Scholar 

  52. Klos A, Tenner AJ, Johswich K-O et al (2009) The role of the Anaphylatoxins in health and disease. MolImmunol 46:2753–2766. https://doi.org/10.1016/j.molimm.2009.04.027

    Article  CAS  Google Scholar 

  53. Krock E, Rosenzweig DH, Currie JB et al (2017) Toll-like receptor activation induces degeneration of human intervertebral discs. Sci Rep 7:17184. https://doi.org/10.1038/s41598-017-17472-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hajishengallis G, Lambris JD (2010) Crosstalk pathways between Toll-like receptors and the complement system. Trends Immunol 31:154–163. https://doi.org/10.1016/j.it.2010.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Richmond BW, Du R-H, Han W et al (2018) Bacterial-derived neutrophilic inflammation drives lung remodeling in a mouse model of chronic obstructive pulmonary disease. Am J Respir Cell MolBiol 58:736–744. https://doi.org/10.1165/rcmb.2017-0329OC

    Article  CAS  Google Scholar 

  56. Gavin C, Meinke S, Heldring N et al (2019) The complement system is essential for the phagocytosis of mesenchymal stromal cells by monocytes. Front Immunol. https://doi.org/10.3389/fimmu.2019.02249

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wilkins LJ, Monga M, Miller AW (2019) Defining dysbiosis for a cluster of chronic diseases. Sci Rep 9:12918. https://doi.org/10.1038/s41598-019-49452-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ragland SA, Criss AK (2017) From bacterial killing to immune modulation: recent insights into the functions of lysozyme. PLoSPathog 13:e1006512. https://doi.org/10.1371/journal.ppat.1006512

    Article  CAS  Google Scholar 

  59. van Hensbergen VP, Wu Y, van Sorge NM, Touqui L (2020) Type IIA Secreted phospholipase A2 in host defense against bacterial infections. Trends Immunol 41:313–326. https://doi.org/10.1016/j.it.2020.02.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

SR, SDCR, TC, and MR conceived and formulated the project. NSM, TC contributed to the design of the analysis; performed laboratory experiments and bulk of data analysis; SDCR, KSSV, KRM, and SAP wrote and prepared the manuscript. All authors have read through and given the final approval of the submitted publication. We also acknowledge the efforts of Ms M Sujitha and Ms M Dhanalakshmi for assistance in LC–MS/MS experiments.

Funding

The project was funded by Ganga Orthopaedic Research & Education Foundation (GOREF 2019–07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rajasekaran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was performed after approval of the IRB committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajasekaran, S., Chitraa, T., Dilip Chand Raja, S. et al. Subclinical infection can be an initiator of inflammaging leading to degenerative disk disease: evidence from host-defense response mechanisms. Eur Spine J 30, 2586–2604 (2021). https://doi.org/10.1007/s00586-021-06826-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-021-06826-z

Keywords

Navigation