Characterization of the microstructure of the intervertebral disc in patients with chronic low back pain by diffusion kurtosis imaging

  • Li Li
  • Zhiguo Zhou
  • Wei Xiong
  • Jicheng Fang
  • Yang Li
  • Zhanying Jiao
  • Alessandro Scotti
  • Feng Li
  • WenZhen ZhuEmail author
  • Kejia Cai
Original Article



Multivariate analysis of T2-weighted signal, diffusion ADC, and DKI parameters and tractography were used to differentiate chronic non-specific low back pain (CLBP) patients and asymptomatic controls (AC).


A total of 30 patients with CLBP and 23 AC underwent diffusion kurtosis imaging (DKI) of lumbar spine with a 3T MRI scanner to get the ADC values and seven parameters of DKI in the nucleus pulposus (NP) of the intervertebral disc. The tractography and the tract-related parameters as other parameters were also generated to indicate the intactness of annulus fibrosus (AF). T2-grades of the discs were also quantified based on an eight-grade degeneration grading system. ADC and T2-grades were compared with DKI parameters for the differentiation of CLBP and AC groups.


There was no difference in the T2 grades, ADC value, and multiple parameters in DKI of NP between CLBP and AC groups (P > 0.05). The average FA values in NP in AC group were found significantly higher than in the CLBP group (P < 0.05). The scores for the intactness of AF of the intervertebral discs were significantly different in CLBP and AC groups, with 90% of sensitivity and 70% specificity (P < 0.05). Additionally, there were significantly differences in the length and volume values of the AF in CLBP and AC groups (P < 0.05).


DKI is a good noninvasive method, and it might help to differentiate CLBP from AC. Particularly, the continuation of DKI tractography reflects the presence of annulus fibrosus fissures, an important character in the generation of the low back pain.

Graphic abstract

These slides can be retrieved under Electronic Supplementary Material.


Low back pain Intervertebral disc degeneration Microstructure Diffusion kurtosis imaging Tractography 


Supplementary material

586_2019_6095_MOESM1_ESM.pptx (5.1 mb)
Supplementary file1 (PPTX 5234 kb)


  1. 1.
    Vos T, Flaxman AD, Naghavi M et al (2012) Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2163–2196CrossRefGoogle Scholar
  2. 2.
    Patrick N, Emanski E, Knaub MA (2014) Acute and chronic low back pain. Med Clin North Am 98(4):777–789CrossRefGoogle Scholar
  3. 3.
    Risbud MV, Shapiro IM (2014) Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat Rev Rheumatol 10(1):44–56CrossRefGoogle Scholar
  4. 4.
    Chan WC, Au TY, Tam V, Cheah KS, Chan D (2014) Coming together is a beginning: the making of an intervertebral disc. Birth Defects Res C Embryo Today 102(1):83–100CrossRefGoogle Scholar
  5. 5.
    Pattappa G, Li Z, Peroglio M, Wismer N, Alini M, Grad S (2012) Diversity of intervertebral disc cells: phenotype and function. J Anat 221(6):480–496CrossRefGoogle Scholar
  6. 6.
    Fontana G, See E, Pandit A (2015) Current trends in biologics delivery to restore intervertebral disc anabolism. Adv Drug Deliv Rev 84:146–158CrossRefGoogle Scholar
  7. 7.
    Guterl CC, See EY, Blanquer SB et al (2013) Challenges and strategies in the repair of ruptured annulus fibrosus. Eur Cell Mater 25:1–21CrossRefGoogle Scholar
  8. 8.
    Menezes-Reis R, Salmon CE, Carvalho CS, Bonugli GP, Chung CB, Nogueira-Barbosa MH (2015) T1ρ and T2 mapping of the intervertebral disk: comparison of different methods of segmentation. AJNR Am J Neuroradiol 36(3):606–611CrossRefGoogle Scholar
  9. 9.
    Brinjikji W, Diehn FE, Jarvik JG et al (2015) MRI findings of disc degeneration are more prevalent in adults with low back pain than in asymptomatic controls: a systematic review and meta-analysis. AJNR Am J Neuroradiol 36(12):2394–2399CrossRefGoogle Scholar
  10. 10.
    Tonosu J, Oka H, Higashikawa A, Okazaki H, Tanaka S, Matsudaira K (2017) The associations between magnetic resonance imaging findings and low back pain: a 10-year longitudinal analysis. PLoS ONE 12(11):e0188057CrossRefGoogle Scholar
  11. 11.
    Kealey SM, Aho T, Delong D, Barboriak DP, Provenzale JM, Eastwood JD (2005) Assessment of apparent diffusion coefficient in normal and degenerated intervertebral lumbar disks: initial experience. Radiology 235(2):569–574CrossRefGoogle Scholar
  12. 12.
    Tourell MC, Kirkwood M, Pearcy MJ, Momot KI, Little JP (2017) Load-induced changes in the diffusion tensor of ovine anulus fibrosus: a pilot MRI study. J Magn Reson Imaging 45(6):1723–1735CrossRefGoogle Scholar
  13. 13.
    Neto HR, Correia MM, Nunes RG, Ferreira HA (2015) Exploring the 3D geometry of the diffusion kurtosis tensor-impact on the development of robust tractography procedures and novel biomarkers. Neuroimage 111:85–99CrossRefGoogle Scholar
  14. 14.
    Jensen JH, Helpern JA (2010) MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed 23(7):698–710CrossRefGoogle Scholar
  15. 15.
    Tabesh A, Jensen JH, Ardekani BA, Helpern JA (2011) Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med 65(3):823–836CrossRefGoogle Scholar
  16. 16.
    Zhu L, Pan Z, Ma Q et al (2017) Diffusion kurtosis imaging study of rectal adenocarcinoma associated with histopathologic prognostic factors: preliminary findings. Radiology 284(1):66–76CrossRefGoogle Scholar
  17. 17.
    Grinberg F, Maximov II, Farrher E et al (2017) Diffusion kurtosis metrics as biomarkers of microstructural development: a comparative study of a group of children and a group of adults. Neuroimage 144(Pt A):12–22CrossRefGoogle Scholar
  18. 18.
    Zhuo J, Xu S, Proctor JL et al (2012) Diffusion kurtosis as an in vivo imaging marker for reactive astrogliosis in traumatic brain injury. Neuroimage 59(1):467–477CrossRefGoogle Scholar
  19. 19.
    Li L, Zhu W, Chen W, Fang J, Li J (2017) The study of the intervertebral disc microstructure in matured rats with diffusion kurtosis imaging. Magn Reson Imaging 42:101–106CrossRefGoogle Scholar
  20. 20.
    Li L, Zhou Z, Li J et al (2019) Diffusion kurtosis imaging provides quantitative assessment of the microstructure changes of disc degeneration: an in vivo experimental study. Eur Spine J 28:1005–1013CrossRefGoogle Scholar
  21. 21.
    Balagué F, Mannion AF, Pellisé F, Cedraschi C (2012) Non-specific low back pain. Lancet 379(9814):482–491CrossRefGoogle Scholar
  22. 22.
    Gussew A, Rzanny R, Güllmar D, Scholle HC, Reichenbach JR (2011) 1H-MR spectroscopic detection of metabolic changes in pain processing brain regions in the presence of non-specific chronic low back pain. Neuroimage 54(2):1315–1323CrossRefGoogle Scholar
  23. 23.
    Packham TL, Bean D, Johnson MH et al (2019) Measurement properties of the SF-MPQ-2 Neuropathic Qualities subscale in persons with CRPS: validity, responsiveness, and Rasch analysis. Pain Med 20(4):799–809. CrossRefGoogle Scholar
  24. 24.
    Chiarotto A, Boers M, Deyo RA et al (2018) Core outcome measurement instruments for clinical trials in nonspecific low back pain. Pain 159(3):481–495Google Scholar
  25. 25.
    Ludescher B, Effelsberg J, Martirosian P, et al. (2008) T2- and diffusion-maps reveal diurnal changes of intervertebral disc composition: an in vivo MRI study at 1.5 Tesla. J Magn Reson Imaging 28(1): 252–257CrossRefGoogle Scholar
  26. 26.
    Griffith JF, Wang YX, Antonio GE, et al. (2007) Modified Pfirrmann grading system for lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 32(24):E708–E712CrossRefGoogle Scholar
  27. 27.
    Shahraki NM, Fatemi A, Agarwal A, Goel VK (2017) Prediction of clinically relevant initiation and progression of tears within annulus fibrosus. J Orthop Res. 35(1):113–122CrossRefGoogle Scholar
  28. 28.
    Stefanakis M, Al-Abbasi M, Harding I, et al. (2012) Annulus fissures are mechanically and chemically conducive to the ingrowth of nerves and blood vessels. Spine (Phila Pa 1976) 37(22):1883–1891CrossRefGoogle Scholar
  29. 29.
    Osti OL, Vernon-Roberts B, Moore R, Fraser RD (1992) Annular tears and disc degeneration in the lumbar spine. A post-mortem study of 135 discs. J Bone Joint Surg Br 74(5):678–682CrossRefGoogle Scholar
  30. 30.
    Ohtori S, Inoue G, Miyagi M, Takahashi K (2015) Pathomechanisms of discogenic low back pain in humans and animal models. Spine J 15(6):1347–1355CrossRefGoogle Scholar
  31. 31.
    Peng Y, Lv FJ (2015) Symptomatic versus asymptomatic intervertebral disc degeneration: is inflammation the key. Crit Rev Eukaryot Gene Expr 25(1):13–21CrossRefGoogle Scholar
  32. 32.
    Zhang W, Ma X, Wang Y et al (2014) Assessment of apparent diffusion coefficient in lumbar intervertebral disc degeneration. Eur Spine J 23(9):1830–1836CrossRefGoogle Scholar
  33. 33.
    Chiu EJ, Newitt DC, Segal MR, Hu SS, Lotz JC, Majumdar S (2001) Magnetic resonance imaging measurement of relaxation and water diffusion in the human lumbar intervertebral disc under compression in vitro. Spine (Phila Pa 1976) 26(19):E437–E444CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Li Li
    • 1
    • 4
    • 5
  • Zhiguo Zhou
    • 2
  • Wei Xiong
    • 3
  • Jicheng Fang
    • 1
  • Yang Li
    • 1
  • Zhanying Jiao
    • 1
  • Alessandro Scotti
    • 4
    • 5
  • Feng Li
    • 3
  • WenZhen Zhu
    • 1
    Email author
  • Kejia Cai
    • 4
    • 5
  1. 1.Radiological Department, Tongji Hospital, Tongji Medical CollegeHUSTWuhanPeople’s Republic of China
  2. 2.Department of Orthopedics, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical CollegeHUSTWuhanPeople’s Republic of China
  3. 3.Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHUSTWuhanPeople’s Republic of China
  4. 4.Departments of RadiologyUniversity of Illinois At ChicagoChicagoUSA
  5. 5.Department of Bioengineering, and the Center for MR ResearchUniversity of Illinois At ChicagoChicagoUSA

Personalised recommendations