Hybrid stabilization of unstable osteoporotic thoracolumbar vertebral body fractures: clinical and radiological outcome after a mean of 4 years

  • Ulrich J. SpieglEmail author
  • Christine Anemüller
  • Jan-Sven Jarvers
  • Nicolaus von der Höh
  • Christoph Josten
  • Christoph-Eckhard Heyde
Original Article



The aim of this study was to evaluate midterm results after hybrid stabilization of unstable osteoporotic fractures of the thoracolumbar junction.


This retrospective study was performed at a level I trauma center. A total of 113 patients aged 61 and older were stabilized using hybrid stabilization consisting of short-segmental posterior instrumentation and augmentation of the fractured vertebral body after suffering an unstable osteoporotic vertebral body fracture at the thoracolumbar spine. All patients were treated by hybrid stabilization. The primary outcome parameters were the ODI score and loss of reduction. Secondary radiological outcome parameters were the sagittal alignment parameters.


Seventy-two women and 41 men (74.6 ± 6.8 years) were included. Sixty-nine patients (61%) were re-evaluated after a mean of 48 months. Seventeen patients have died during the follow-up period (15%). A total of five in-patient complications were documented (4.4%). Additionally, 12 patients (17.4%) suffered from further osteoporotic vertebral body fractures affecting vertebral bodies of different levels. The average ODI score at the final follow-up was 29.9 (± 22.0). Thereby, 66.6% of all patients had low to moderate limitations. The average regional sagittal loss of reduction was 7.4% (± 5.6%). Loss of reduction was below 10° in 78% of the patients. There were statistically significant correlations between the loss of reduction and the ODI score, pelvic incidence and latest Cobb angle, and between the ODI scores and the lumbar lordosis.


The majority of patients had low or moderate limitations and low to moderate reduction loss. Thereby, high loss of reduction correlated directly with inferior outcomes.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.


Thoracolumbar spine Vertebral body fracture Hybrid stabilization Sagittal alignment Osteoporotic fracture 


Compliance with ethical standards

Conflict of interest

This work was not supported by any external sources of funding. Two of the authors are in advisory boards of companies, C-EH for Fa Medacta, CJ for Fa Zimmer, Fa. Ziehm and Fa. Silony. Additionally J-SJ received horonary for speaking from Fa. Ziehm. Two aurthors (UJS and C-EH) received material supply for biomechanical testing by Fa. Medacta.

Supplementary material

586_2019_5957_MOESM1_ESM.pptx (150 kb)
Supplementary material 1 (PPTX 150 kb)


  1. 1.
    Abdelgawaad AS, Ezzati A, Govindasamy R, Krajnovic B, Elnady B, Said GZ (2017) Kyphoplasty for osteoporotic vertebral fractures with posterior wall injury. Spine J. Google Scholar
  2. 2.
    Aubry-Rozier B, Stoll D, Gonzalez Rodriguez E, Hans D, Prudent V, Seuret A, Farron A, Lamy O (2018) Impact of a fracture liaison service on patient management after an osteoporotic fracture: the CHUV FLS. Swiss Med Wkly 148:w14579. Google Scholar
  3. 3.
    Bae H, Shen M, Maurer P, Peppelman W, Beutler W, Linovitz R, Westerlund E, Peppers T, Lieberman I, Kim C, Girardi F (2010) Clinical experience using Cortoss for treating vertebral compression fractures with vertebroplasty and kyphoplasty: twenty four-month follow-up. Spine (Phila Pa 1976) 35(20):E1030–E1036. CrossRefGoogle Scholar
  4. 4.
    Buchbinder R, Johnston RV, Rischin KJ, Homik J, Jones CA, Golmohammadi K, Kallmes DF (2018) Percutaneous vertebroplasty for osteoporotic vertebral compression fracture. Cochrane Database Syst Rev 4:CD006349. Google Scholar
  5. 5.
    Che H, Breuil V, Cortet B, Paccou J, Thomas T, Chapuis L, Debiais F, Mehsen-Cetre N, Javier RM, Loiseau Peres S, Roux C, Briot K (2018) Vertebral fractures cascade: potential causes and risk factors. Osteoporos Int. Google Scholar
  6. 6.
    Eschler A, Ender SA, Schiml K, Mittlmeier T, Gradl G (2015) Bony healing of unstable thoracolumbar burst fractures in the elderly using percutaneously applied titanium mesh cages and a transpedicular fixation system with expandable screws. PLoS ONE 10(2):e0117122. CrossRefGoogle Scholar
  7. 7.
    Fuentes S, Blondel B, Metellus P, Gaudart J, Adetchessi T, Dufour H (2010) Percutaneous kyphoplasty and pedicle screw fixation for the management of thoraco-lumbar burst fractures. Eur Spine J 19(8):1281–1287. CrossRefGoogle Scholar
  8. 8.
    Josten C, Schmidt C, Spiegl U (2012) Osteoporotic vertebral body fractures of the thoracolumbar spine: diagnostics and therapeutic strategies. Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen 83(10):866–874. CrossRefGoogle Scholar
  9. 9.
    Kim HJ, Park S, Park SH, Park J, Chang BS, Lee CK, Yeom JS (2018) Prevalence of frailty in patients with osteoporotic vertebral compression fracture and its association with numbers of fractures. Yonsei Med J 59(2):317–324. CrossRefGoogle Scholar
  10. 10.
    Kobayashi K, Ando K, Nishida Y, Ishiguro N, Imagama S (2018) Epidemiological trends in spine surgery over 10 years in a multicenter database. Eur Spine J 27(8):1698–1703. CrossRefGoogle Scholar
  11. 11.
    Korovessis P, Mpountogianni E, Syrimpeis V (2016) Percutaneous pedicle screw fixation plus kyphoplasty for thoracolumbar fractures A2, A3 and B2. Eur Spine J. Google Scholar
  12. 12.
    Li Q, Sun J, Cui X, Jiang Z, Li T (2017) Analysis of correlation between degeneration of lower lumbar paraspinal muscles and spinopelvic alignment in patients with osteoporotic vertebral compression fracture. J Back Musculoskelet Rehabil 30(6):1209–1214. CrossRefGoogle Scholar
  13. 13.
    Li X, Lu Y, Lin X (2017) Refracture of osteoporotic vertebral body after treatment by balloon kyphoplasty: three cases report. Medicine 96(49):e8961. CrossRefGoogle Scholar
  14. 14.
    Li YX, Guo DQ, Zhang SC, Liang Yuan K, Mo GY, Li DX, Guo HZ, Tang Y, Luo PJ (2018) Risk factor analysis for re-collapse of cemented vertebrae after percutaneous vertebroplasty (PVP) or percutaneous kyphoplasty (PKP). Int Orthop. Google Scholar
  15. 15.
    Newman M, Minns Lowe C, Barker K (2016) Spinal orthoses for vertebral osteoporosis and osteoporotic vertebral fracture: a systematic review. Arch Phys Med Rehabil 97(6):1013–1025. CrossRefGoogle Scholar
  16. 16.
    Rahamimov N, Mulla H, Shani A, Freiman S (2012) Percutaneous augmented instrumentation of unstable thoracolumbar burst fractures. Eur Spine J 21(5):850–854. CrossRefGoogle Scholar
  17. 17.
    Riesner HJ, Kiupel K, Lang P, Stuby F, Friemert B, Palm HG (2016) Clinical relevance of cement leakage after radiofrequency Kyphoplasty vs. balloon Kyphoplasty: a prospective randomised study. Zeitschrift fur Orthopadie und Unfallchirurgie 154(4):370–376. CrossRefGoogle Scholar
  18. 18.
    Schnake KJ, Blattert TR, Hahn P, Franck A, Hartmann F, Ullrich B, Verheyden A, Mörk S, Zimmermann V, Gonschorek O, Müller M, Katscher S, Saman AE, Pajenda G, Morrison R, Schinkel C, Piltz S, Partenheimer A, Müller CW, Gercek E, Scherer M, Bouzraki N, Kandziora F, Spine Section of the German Society for Orthopaedics and Trauma (2018) Classification of osteoporotic thoracolumbar spine fractures: recommendations of the spine section of the German society for orthopaedics and trauma (DGOU). Global Spine J 8(2 Suppl):46S–49S. CrossRefGoogle Scholar
  19. 19.
    Spiegl U, Jarvers JS, Heyde CE, Josten C (2017) Osteoporotic vertebral body fractures of the thoracolumbar spine: indications and techniques of a 360 degrees -stabilization. Eur J Trauma Emerg Surg 43(1):27–33. CrossRefGoogle Scholar
  20. 20.
    Spiegl UJ, Hauck S, Merkel P, Buhren V, Gonschorek O (2012) Long-term results of kyphoplasty with additive dorsal instrumentation of incomplete burst fractures of the thoracolumbar spine in the elderly. Zeitschrift fur Orthopadie und Unfallchirurgie 150(6):579–582. Google Scholar
  21. 21.
    Sun ZY, Li XF, Zhao H, Lin J, Qian ZL, Zhang ZM, Yang HL (2017) Percutaneous balloon Kyphoplasty in treatment of painful osteoporotic occult vertebral fracture: a retrospective study of 89 cases. Med Sci Monit Res 23:1682–1690CrossRefGoogle Scholar
  22. 22.
    Svedbom A, Borgstom F, Hernlund E, Strom O, Alekna V, Bianchi ML, Clark P, Curiel MD, Dimai HP, Jurisson M, Kallikorm R, Lember M, Lesnyak O, McCloskey E, Sanders KM, Silverman S, Solodovnikov A, Tamulaitiene M, Thomas T, Toroptsova N, Uuskula A, Tosteson ANA, Jonsson B, Kanis JA (2018) Quality of life for up to 18 months after low-energy hip, vertebral, and distal forearm fractures-results from the ICUROS. Osteoporos Int 29(3):557–566. CrossRefGoogle Scholar
  23. 23.
    Uchida K, Nakajima H, Yayama T, Miyazaki T, Hirai T, Kobayashi S, Chen K, Guerrero AR, Baba H (2010) Vertebroplasty-augmented short-segment posterior fixation of osteoporotic vertebral collapse with neurological deficit in the thoracolumbar spine: comparisons with posterior surgery without vertebroplasty and anterior surgery. J Neurosurg Spine 13(5):612–621. CrossRefGoogle Scholar
  24. 24.
    Vaccaro AR, Oner C, Kepler CK, Dvorak M, Schnake K, Bellabarba C, Reinhold M, Aarabi B, Kandziora F, Chapman J, Shanmuganathan R, Fehlings M, Vialle L, Injury AOSC, Trauma Knowledge F (2013) AOSpine thoracolumbar spine injury classification system: fracture description, neurological status, and key modifiers. Spine (Phila Pa 1976) 38(23):2028–2037. CrossRefGoogle Scholar
  25. 25.
    Verlaan JJ, Somers I, Dhert WJ, Oner FC (2015) Clinical and radiological results 6 years after treatment of traumatic thoracolumbar burst fractures with pedicle screw instrumentation and balloon assisted endplate reduction. Spine J 15(6):1172–1178. CrossRefGoogle Scholar
  26. 26.
    Yasuda T, Kawaguchi Y, Suzuki K, Nakano M, Seki S, Watabnabe K, Kanamori M, Kimura T (2017) Five-year follow up results of posterior decompression and fixation surgery for delayed neural disorder associated with osteoporotic vertebral fracture. Medicine 96(51):e9395. CrossRefGoogle Scholar
  27. 27.
    Zhao WT, Qin DP, Zhang XG, Wang ZP, Tong Z (2018) Biomechanical effects of different vertebral heights after augmentation of osteoporotic vertebral compression fracture: a three-dimensional finite element analysis. J Orthop Surg Res 13(1):32. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Orthopaedics, Trauma Surgery and Reconstructive SurgeryUniversity of LeipzigLeipzigGermany

Personalised recommendations