Advertisement

Biplanar stereoradiography predicts pulmonary function tests in adolescent idiopathic scoliosis: a cross-sectional study

  • H. BouloussaEmail author
  • R. Pietton
  • C. Vergari
  • T. X. Haen
  • W. Skalli
  • R. Vialle
Original Article

Abstract

Purpose

Various spinal and rib cage parameters measured from complex examinations were found to be correlated with preoperative pulmonary function tests (PFT). The aim was to investigate the relationship between preoperative rib cage parameters and PFT using biplanar stereoradiography in patients with severe adolescent idiopathic scoliosis.

Methods

Fifty-four patients, 45 girls and nine boys, aged 13.8 ± 1.2 years, with Lenke 1 or 2 thoracic scoliosis (> 50°) requiring surgical correction were prospectively included. All patients underwent preoperative PFT and low-dose biplanar X-rays. The following data were collected: forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), FEV1/FVC ratio, residual volume, slow vital capacity (SVC), total lung capacity (TLC), rib cage volume (RCV), maximum rib hump, maximum width, mean thoracic index, spinal penetration index, apical vertebral rotation, main curve Cobb angle (MCCA), T4–T12 kyphosis. The primary outcome was the relationship between rib cage parameters and PFT. The secondary outcome was the relationship between rib cage parameters and spine parameters. Data were analyzed using Spearman’s rank test. A multivariable regression analysis was performed to compare PFTs and structural parameters. Significance was set at α = 0.05.

Results

The mean MCCA was 68.7° ± 16.7°. RCV was highly correlated with all pulmonary capacities: TLC (r = 0.76, p < 0.0001), SVC (r = 0.78, p < 0.0001) and FVC (r = 0.77, p < 0.0001). RCV had a low correlation with FEV1/FVC (r = − 0.34, p = 0.014). SPI was not correlated with any pulmonary parameters.

Conclusion

Rib cage volume measured by biplanar stereoradiography may represent a prediction tool for PFTs.

Level of evidence

Non-randomized cross-sectional study among consecutive patients, Level 2.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.

Keywords

Pulmonary function tests AIS Three-dimensional reconstructions Rib cage Scoliosis 

Notes

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Supplementary material

586_2019_5940_MOESM1_ESM.pptx (785 kb)
Supplementary material 1 (PPTX 786 kb)

References

  1. 1.
    Takahashi S, Suzuki N, Asazuma T, Kono K, Ono T, Toyama Y (2007) Factors of thoracic cage deformity that affect pulmonary function in adolescent idiopathic thoracic scoliosis. Spine 32(1):106–112CrossRefPubMedGoogle Scholar
  2. 2.
    Xue X, Shen J, Zhang J, Zhao H, Li S, Wang Y et al (2015) An analysis of thoracic cage deformities and pulmonary function tests in congenital scoliosis. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 24(7):1415–1421CrossRefGoogle Scholar
  3. 3.
    Johnston CE, Richards BS, Sucato DJ, Bridwell KH, Lenke LG, Erickson M et al (2011) Correlation of preoperative deformity magnitude and pulmonary function tests in adolescent idiopathic scoliosis. Spine 36(14):1096–1102CrossRefPubMedGoogle Scholar
  4. 4.
    Dreimann M, Hoffmann M, Kossow K, Hitzl W, Meier O, Koller H (2014) Scoliosis and chest cage deformity measures predicting impairments in pulmonary function: a cross-sectional study of 492 patients with scoliosis to improve the early identification of patients at risk. Spine 39(24):2024–2033CrossRefPubMedGoogle Scholar
  5. 5.
    Newton PO, Faro FD, Gollogly S, Betz RR, Lenke LG, Lowe TG (2005) Results of preoperative pulmonary function testing of adolescents with idiopathic scoliosis. A study of six hundred and thirty-one patients. J Bone Joint Surg Am 87(9):1937–1946CrossRefPubMedGoogle Scholar
  6. 6.
    Vedantam R, Crawford AH (1997) The role of preoperative pulmonary function tests in patients with adolescent idiopathic scoliosis undergoing posterior spinal fusion. Spine 22(23):2731–2734CrossRefPubMedGoogle Scholar
  7. 7.
    Chu WC, Ng BK, Li AM, Lam T-P, Lam WW, Cheng JC (2007) Dynamic magnetic resonance imaging in assessing lung function in adolescent idiopathic scoliosis: a pilot study of comparison before and after posterior spinal fusion. J Orthop Surg 2:20CrossRefGoogle Scholar
  8. 8.
    Ledonio CGT, Rosenstein BE, Polly DW, Johnston CE, Regelmann WE, Nuckley DJ (2012) Pulmonary function tests correlated with thoracic volumes in adolescent idiopathic scoliosis. J Orthop Res Off Publ Orthop Res Soc 34:175–182Google Scholar
  9. 9.
    Hoffman DA, Lonstein JE, Morin MM, Visscher W, Harris BS, Boice JD (1989) Breast cancer in women with scoliosis exposed to multiple diagnostic x rays. J Natl Cancer Inst 81(17):1307–1312CrossRefPubMedGoogle Scholar
  10. 10.
    Dubousset J, Charpak G, Skalli W, Kalifa G, Lazennec J-Y (2007) EOS stereo-radiography system: whole-body simultaneous anteroposterior and lateral radiographs with very low radiation dose. Rev Chir Orthop Reparatrice Appar Mot 93(6 Suppl):141–143CrossRefPubMedGoogle Scholar
  11. 11.
    Ilharreborde B, Dubousset J, Le Huec J-C (2014) Use of EOS imaging for the assessment of scoliosis deformities: application to postoperative 3D quantitative analysis of the trunk. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 23(Suppl 4):S397–S405Google Scholar
  12. 12.
    Humbert L, De Guise JA, Aubert B, Godbout B, Skalli W (2009) 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys 31(6):681–687CrossRefPubMedGoogle Scholar
  13. 13.
    Pasha S, Capraro A, Cahill PJ, Dormans JP, Flynn JM (2016) Bi-planar spinal stereoradiography of adolescent idiopathic scoliosis: considerations in 3D alignment and functional balance. Eur Spine J 25(10):3234–3241CrossRefPubMedGoogle Scholar
  14. 14.
    Ilharreborde B, Dubousset J, Skalli W, Mazda K (2013) Spinal penetration index assessment in adolescent idiopathic scoliosis using EOS low-dose biplanar stereoradiography. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 22(11):2438–2444CrossRefGoogle Scholar
  15. 15.
    Pietton R, Bouloussa H, Vergari C, Skalli W, Vialle R (2017) Rib cage measurement reproducibility using biplanar stereoradiographic 3D reconstructions in adolescent idiopathic scoliosis. J Pediatr Orthop.  https://doi.org/10.1097/BPO.0000000000001095 [Epub ahead of print]
  16. 16.
    Aubert B, Vergari C, Ilharreborde B, Courvoisier A, Skalli W (2016) 3D reconstruction of rib cage geometry from biplanar radiographs using a statistical parametric model approach. Comput Methods Biomech Biomed Eng Imaging Vis 4(5):281–295CrossRefGoogle Scholar
  17. 17.
    Dubousset J, Wicart P, Pomero V, Barois A, Estournet B (2003) Spinal penetration index: new three-dimensional quantified reference for lordoscoliosis and other spinal deformities. J Orthop Sci Off J Jpn Orthop Assoc 8(1):41–49Google Scholar
  18. 18.
    Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB et al (2013) Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ 346:f2360CrossRefPubMedGoogle Scholar
  19. 19.
    Wen Y, Kai S, Yong-Gang Z, Guo-Quan Z, Tian-Xiang D (2016) Relationship between lung volume and pulmonary function in patients with adolescent idiopathic scoliosis: computed tomographic-based 3-dimensional volumetric reconstruction of lung parenchyma. Clin Spine Surg 29(8):E396–E400CrossRefPubMedGoogle Scholar
  20. 20.
    Courvoisier A, Vialle R, Skalli W (2014) EOS 3D Imaging: assessing the impact of brace treatment in adolescent idiopathic scoliosis. Expert Rev Med Devices 11(1):1–3CrossRefPubMedGoogle Scholar
  21. 21.
    Sabourin M, Jolivet E, Miladi L, Wicart P, Rampal V, Skalli W (2010) Three-dimensional stereoradiographic modeling of rib cage before and after spinal growing rod procedures in early-onset scoliosis. Clin Biomech Bristol Avon 25(4):284–291CrossRefGoogle Scholar
  22. 22.
    Yaszay B, Bastrom TP, Bartley CE, Parent S, Newton PO (2017) The effects of the three-dimensional deformity of adolescent idiopathic scoliosis on pulmonary function. Eur Spine J 26(6):1658–1664CrossRefPubMedGoogle Scholar
  23. 23.
    Redding GJ, Mayer OH (2011) Structure-respiration function relationships before and after surgical treatment of early-onset scoliosis. Clin Orthop 469(5):1330–1334CrossRefPubMedGoogle Scholar
  24. 24.
    Abdelaal AAM, Abd El Kafy EMAES, Elayat MSEM, Sabbahi M, Badghish MSS (2018) Changes in pulmonary function and functional capacity in adolescents with mild idiopathic scoliosis: observational cohort study. J Int Med Res 46(1):381–391CrossRefPubMedGoogle Scholar
  25. 25.
    Cottalorda J, Kohler R, Garin C, Lecante P (1997) Orthopedic treatment of scoliosis: new technique using impression by optic procedure. Arch Pediatr Organe Off Soc Francaise Pediatr 4(5):464–467Google Scholar
  26. 26.
    Cottalorda J, Kohler R, Garin C, Genevois P, Lecante C, Berge B (2005) Orthoses for mild scoliosis: a prospective study comparing traditional plaster mold manufacturing with fast, noncontact, 3-dimensional acquisition. Spine 30(4):399–405CrossRefPubMedGoogle Scholar
  27. 27.
    Charles YP, Marcoul A, Schaeffer M, Canavese F, Diméglio A (2017) Three-dimensional and volumetric thoracic growth in children with moderate idiopathic scoliosis compared with normal. J Pediatr Orthop Part B 26(3):227–232CrossRefGoogle Scholar
  28. 28.
    Akazawa T, Kuroya S, Iinuma M, Asano K, Torii Y, Umehara T et al (2018) Pulmonary function and thoracic deformities in adolescent idiopathic scoliosis 27 years or longer after spinal fusion with Harrington instrument. J Orthop Sci 23(1):45–50CrossRefPubMedGoogle Scholar
  29. 29.
    Boyer J, Amin N, Taddonio R, Dozor AJ (1996) Evidence of airway obstruction in children with idiopathic scoliosis. Chest 109(6):1532–1535CrossRefPubMedGoogle Scholar
  30. 30.
    Hale K, Rasp F (1987) Pulmonary function testing. In: Moe JH, Bradford DS (eds) Moe’s textbook of scoliosis and other spinal deformities. WB Saunders Co Ltd, Philadelphia, p 585Google Scholar
  31. 31.
    Dimeglio A, Canavese F (2012) The growing spine: how spinal deformities influence normal spine and thoracic cage growth. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 21(1):64–70CrossRefGoogle Scholar
  32. 32.
    Charles YP, Diméglio A, Marcoul M, Bourgin J-F, Marcoul A, Bozonnat M-C (2008) Influence of idiopathic scoliosis on three-dimensional thoracic growth. Spine 33(11):1209–1218CrossRefPubMedGoogle Scholar
  33. 33.
    Canavese F, Dimeglio A (2013) Normal and abnormal spine and thoracic cage development. World J Orthop 4(4):167–174CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pediatric Orthopedics, Armand Trousseau HospitalParis 6 UniversityParisFrance
  2. 2.Arts et Métiers ParisTech, LBM/Institut de Biomécanique Humaine Georges CharpakParisFrance
  3. 3.Department of Spine SurgeryKaiser Permanente Oakland Medical CenterOaklandUSA

Personalised recommendations