Advertisement

Analysis of skeletal muscle mass in women over 40 with degenerative lumbar scoliosis

  • Yawara Eguchi
  • Toru Toyoguchi
  • Kazuhide Inage
  • Kazuki Fujimoto
  • Sumihisa Orita
  • Miyako Suzuki
  • Hirohito Kanamoto
  • Koki Abe
  • Masaki Norimoto
  • Tomotaka Umimura
  • Takashi Sato
  • Masao Koda
  • Takeo Furuya
  • Yasuchika Aoki
  • Junichi Nakamura
  • Tsutomu Akazawa
  • Kazuhisa Takahashi
  • Seiji Ohtori
Original Article

Abstract

Purpose

We investigated the involvement of sarcopenia in middle-aged and elderly women with degenerative lumbar scoliosis (DLS).

Methods

A total of 971 women (mean age 70.4 years) were included in our study. These included 87 cases of DLS (mean 73.8 years) and 884 controls (69.8). Lumbar and femur BMD was measured for all participants using dual-energy X-ray absorptiometry. We used a bioelectrical impedance analyzer to analyze body composition, including appendicular skeletal muscle mass index (SMI; appendicular lean mass (kg)/(height (m))2. We determined bone density and skeletal muscle mass in both groups and determined the prevalence of sarcopenia. We examined the correlation between bone density and appendicular muscle mass in both groups. We also examined factors related to scoliosis using logistic regression analysis.

Results

The DLS group showed significantly higher lumbar BMD, lower femur BMD, lower lean mass arm, and lower lean mass leg, and lower lean mass trunk (p < 0.05). Sarcopenia prevalence (SMI < 5.75) was 59.8% in DLS subjects and 42.8% in controls, revealing a high prevalence in DLS (p < 0.05). In both groups, lumbar and femur BMD were positively correlated with appendicular muscle mass. By logistic regression analysis, trunk muscle mass was detected as a risk factor for DLS independent of age (p < 0.05).

Conclusions

In middle-aged and elderly women, prevalence of sarcopenia was 59.8% in DLS cases and 42.8% in controls, which revealed a high prevalence in DLS. A decrease in trunk muscle was a significant risk factor for DLS that was independent of age.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.

Keywords

Degenerative lumbar scoliosis Sarcopenia Skeletal muscle mass Bioelectrical impedance analyzer 

Notes

Authors’ contributions

YE conducted data collection and data entry, performed the statistical analysis, and wrote the manuscript. TT developed data collection and participated in the design of the study and performed the statistical analysis. All authors contributed to and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests. We did not receive grants or external funding in support of our research or preparation of this manuscript. We did not receive payments or other benefits or a commitment or agreement to provide such benefits from any commercial entities.

Human and animal rights statement

We declare that all protocols involving humans have been performed in accordance with the ethical standards of the institutional committee laid down in the 1964 Declaration of Helsinki and its later amendments. We declare that all participants provided written informed consent before their inclusion in this study.

Supplementary material

586_2018_5845_MOESM1_ESM.pptx (163 kb)
Supplementary material 1 (PPTX 162 kb)

References

  1. 1.
    Takemitsu Y, Harada Y, Iwahara T, Miyamoto M, Miyatake Y (1988) Lumbar degenerative kyphosis. Clinical, radiological and epidemiological studies. Spine (Phila Pa 1976) 13(11):1317–1326CrossRefGoogle Scholar
  2. 2.
    Aebi M (2005) The adult scoliosis. Eur Spine J 14(10):925–948CrossRefPubMedGoogle Scholar
  3. 3.
    Glassman SD, Bridwell K, Dimar JR, Horton W, Berven S, Schwab F (2005) The impact of positive sagittal balance in adult spinal deformity. Spine 30(18):2024–2029CrossRefPubMedGoogle Scholar
  4. 4.
    Lafage V, Schwab F, Patel A, Hawkinson N, Farcy JP (2009) Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine 34(17):E599–E606CrossRefPubMedGoogle Scholar
  5. 5.
    Schwab F, Ungar B, Blondel B, Buchowski J, Coe J, Deinlein D, DeWald C, Mehdian H, Shaffrey C, Tribus C, Lafage V (2012) Scoliosis Research Society-Schwab adult spinal deformity classification: a validation study. Spine 37(12):1077–1082CrossRefPubMedGoogle Scholar
  6. 6.
    Ploumis A, Liu H, Mehbod AA, Transfeldt EE, Winter RB (2009) A correlation of radiographic and functional measurements in adult degenerative scoliosis. Spine 34(15):1581–1584CrossRefPubMedGoogle Scholar
  7. 7.
    Cruz-Jentoft AJ, Landi F, Schneider SM, Zúñiga C, Arai H, Boirie Y, Chen LK, Fielding RA, Martin FC, Michel JP, Sieber C, Stout JR, Studenski SA, Vellas B, Woo J, Zamboni M, Cederholm T (2014) Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 43(6):748–759CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wu IC, Lin CC, Hsiung CA, Wang CY, Wu CH, Chan DC, Li TC, Lin WY, Huang KC, Chen CY, Hsu CC, Sarcopenia and Translational Aging Research in Taiwan Team (2014) Epidemiology of sarcopenia among community-dwelling older adults in Taiwan: a pooled analysis for a broader adoption of sarcopenia assessments. Geriatr Gerontol Int 14(Suppl 1):52–60CrossRefPubMedGoogle Scholar
  9. 9.
    Morley JE (2008) Sarcopenia: diagnosis and treatment. J Nutr Health Aging 12:452–456CrossRefPubMedGoogle Scholar
  10. 10.
    Sanada K, Miyachi M, Tanimoto M, Yamamoto K, Murakami H, Okumura S, Gando Y, Suzuki K, Tabata I, Higuchi M (2010) A cross-sectional study of sarcopenia in Japanese men and women: reference values and association with cardiovascular risk factors. Eur J Appl Physiol 110:57–65CrossRefPubMedGoogle Scholar
  11. 11.
    Eguchi Y, Suzuki M, Yamanaka H, Tamai H, Kobayashi T, Orita S, Yamauchi K, Suzuki M, Inage K, Fujimoto K, Kanamoto H, Abe K, Aoki Y, Toyone T, Ozawa T, Takahashi K, Ohtori S (2017) Associations between sarcopenia and degenerative lumbar scoliosis in older women. Scoliosis Spinal Disord 12:9CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R (2004) Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am J Epidemiol 159(4):413–421CrossRefPubMedGoogle Scholar
  13. 13.
    Yagi M, Hosogane N, Watanabe K, Asazuma T, Matsumoto M, Keio Spine Research Group (2016) The paravertebral muscle and psoas for the maintenance of global spinal alignment in patient with degenerative lumbar scoliosis. Spine J 16(4):451–458CrossRefPubMedGoogle Scholar
  14. 14.
    Shafaq N, Suzuki A, Matsumura A, Terai H, Toyoda H, Yasuda H, Ibrahim M, Nakamura H (2012) Asymmetric degeneration of paravertebral muscles in patients with degenerative lumbar scoliosis. Spine 37(16):1398–1406CrossRefPubMedGoogle Scholar
  15. 15.
    Kim H, Lee CK, Yeom JS, Lee JH, Cho JH, Shin SI, Lee HJ, Chang BS (2013) Asymmetry of the cross-sectional area of paravertebral and psoas muscle in patients with degenerative scoliosis. Eur Spine J 22(6):1332–1338CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Enomoto M, Ukegawa D, Sakaki K, Tomizawa S, Arai Y, Kawabata S, Kato T, Yoshii T, Shinomiya K, Okawa A (2012) Increase in paravertebral muscle activity in lumbar kyphosis patients by surface electromyography compared with lumbar spinal canal stenosis patients and healthy volunteers. J Spinal Disord Tech 25(6):E167–E173CrossRefPubMedGoogle Scholar
  17. 17.
    Abbas J, Slon V, May H, Peled N, Hershkovitz I, Hamoud K (2016) Paraspinal muscles density: a marker for degenerative lumbar spinal stenosis? BMC Musculoskelet Disord 17(1):422CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ, Lindeman RD (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147(8):755–763CrossRefPubMedGoogle Scholar
  19. 19.
    Miyakoshi N, Hongo M, Mizutani Y, Shimada Y (2013) Prevalence of sarcopenia in Japanese women with osteopenia and osteoporosis. J Bone Miner Metab 31(5):556–561CrossRefGoogle Scholar
  20. 20.
    Oe S, Togawa D, Yoshida G, Hasegawa T, Yamato Y, Kobayashi S, Yasuda T, Banno T, Mihara Y, Matsuyama Y (2017) Difference in spinal sagittal alignment and health-related quality of life between males and females with cervical deformity. Asian Spine J 11(6):959–967CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Oe S, Togawa D, Nakai K, Yamada T, Arima H, Banno T, Yasuda T, Kobayasi S, Yamato Y, Hasegawa T, Yoshida G, Matsuyama Y (2015) The influence of age and sex on cervical spinal alignment among volunteers aged over 50. Spine (Phila Pa 1976) 40(19):1487–1494CrossRefGoogle Scholar
  22. 22.
    Eguchi Y, Norimoto M, Suzuki M, Haga R, Yamanaka H, Tanai H, Kobayashi T, Orita S, Yamauchi K, Suzuki M, Inage K, Fujimoto K, Kanamoto H, Abe K, Umimura T, Sato T, Aoki Y, Watanabe A, Koda M, Furuya T, Nakamura J, Akazawa T, Takahashi K, Ohtori S. Diffusion tensor tractography of the lumbar nerves in patients with degenerative lumbar scoliosis with respect to a direct lateral transpsoas approach. J Neurosurg Spine (in press)Google Scholar
  23. 23.
    Eguchi Y, Toyoguchi T, Inage K, Fujimoto K, Orita S, Yamauchi K, Suzuki M, Kanamoto H, Abe K, Norimoto M, Umimura T, Koda M, Furuya T, Aoki Y, Takahashi K, Ohtori S (2018) Pentosidine concentration is associated with degenerative lumbar scoliosis in older women: preliminary results. Eur Spine J 27(3):597–606CrossRefPubMedGoogle Scholar
  24. 24.
    Liu G, Peacock M, Eilam O, Dorulla G, Braunstein E, Johnston CC (1997) Effect of osteoarthritis in the lumbar spine and hip on bone mineral density and diagnosis of osteoporosis in elderly men and women. Osteoporos Int 7(6):564–569CrossRefPubMedGoogle Scholar
  25. 25.
    Sjöblom S, Suuronen J, Rikkonen T, Honkanen R, Kröger H, Sirola J (2013) Relationship between postmenopausal osteoporosis and the components of clinical sarcopenia. Maturitas 75(2):175–180CrossRefPubMedGoogle Scholar
  26. 26.
    Botolin S, McCabe LR (2006) Chronic hyperglycemia modulates osteoblast gene expression through osmotic and non-osmotic pathways. J Cell Biochem 99(2):411–424CrossRefPubMedGoogle Scholar
  27. 27.
    Lauretani F, Maggio M, Valenti G, Dall’Aglio E, Ceda GP (2010) Vitamin D in older population: new roles for this ‘classic actor’? Aging Male 13(4):215–232CrossRefPubMedGoogle Scholar
  28. 28.
    Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281CrossRefPubMedGoogle Scholar
  29. 29.
    Hongo M, Itoi E, Sinaki M, Miyakoshi N, Shimada Y, Maekawa S, Okada K, Mizutani Y (2007) Effect of low-intensity back exercise on quality of life and back extensor strength in patients with osteoporosis: a randomized controlled trial. Osteoporos Int 18(10):1389–1395CrossRefPubMedGoogle Scholar
  30. 30.
    Murad MH, Elamin KB, Abu Elnour NO, Elamin MB, Alkatib AA, Fatourechi MM, Almandoz JP, Mullan RJ, Lane MA, Liu H, Erwin PJ, Hensrud DD, Montori VM (2011) Clinical review: the effect of vitamin D on falls: a systematic review and meta-analysis. J Clin Endocrinol Metab 96(10):2997–3006CrossRefPubMedGoogle Scholar
  31. 31.
    Buckinx F, Reginster JY, Dardenne N, Croisiser JL, Kaux JF, Beaudart C, Slomian J, Bruyère O (2015) Concordance between muscle mass assessed by bioelectrical impedance analysis and by dual energy X-ray absorptiometry: a cross-sectional study. BMC Musculoskelet Disord 16:60CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yawara Eguchi
    • 1
  • Toru Toyoguchi
    • 2
  • Kazuhide Inage
    • 3
  • Kazuki Fujimoto
    • 3
  • Sumihisa Orita
    • 3
  • Miyako Suzuki
    • 3
  • Hirohito Kanamoto
    • 3
  • Koki Abe
    • 3
  • Masaki Norimoto
    • 3
  • Tomotaka Umimura
    • 3
  • Takashi Sato
    • 3
  • Masao Koda
    • 3
  • Takeo Furuya
    • 3
  • Yasuchika Aoki
    • 4
  • Junichi Nakamura
    • 3
  • Tsutomu Akazawa
    • 5
  • Kazuhisa Takahashi
    • 3
  • Seiji Ohtori
    • 3
  1. 1.Department of Orthopaedic SurgeryShimoshizu National HospitalYotsukaidoJapan
  2. 2.Department of Orthopaedic SurgeryChiba Qiball ClinicChibaJapan
  3. 3.Department of Orthopaedic Surgery, Graduate School of MedicineChiba UniversityChibaJapan
  4. 4.Department of Orthopaedic SurgeryEastern Chiba Medical CenterToganeJapan
  5. 5.Department of Orthopaedic SurgerySt. Marianna University School of MedicineKawasakiJapan

Personalised recommendations