Advertisement

Diagnostic accuracy of classical radiological measurements for basilar invagination of type B at MRI

  • José J. C. Nascimento
  • Eulâmpio J. S. Neto
  • Carlos F. Mello-Junior
  • Marcelo M. Valença
  • Severino A. Araújo-Neto
  • Paula R. B. Diniz
Original Article

Abstract

Objective

To evaluate the diagnostic accuracy of classical measurements for basilar invagination (BI) of type B at MRI.

Methods

This study used head MRIs from 31 participants with BI type B and 96 controls. The radiological criterion for BI was the odontoid process invagination using the obex as reference. It based on the independent prospective reading of two neuroradiologists. Concordance between the two neuroradiologists was analysed through the KAPPA index, and the discrepancy was resolved in a consensus meeting. A third examiner measured in two occasions (double blind) the distance of the odontoid apex to Chamberlain’s line (DOCL) and McGregor’s line (DOMG), clivus canal angle (CCA), Welcker’s basal angle (WBA), and Boogaard’s angle (BOA). Intra-examiner reproducibility of the measurements was evaluated with the intraclass correlation coefficient and the diagnostic accuracy by ROC curve. All analyses were at 95% confidence interval.

Results

Agreement between the two neuroradiologists was statistically relevant (KAPPA = .91; P = .0001). The intra-examiner reproducibilities were .98 (DOCL), .97 (DOMG), .96 (CCA), .94 (WBA), and .95 (BOA) (P < .05). The areas under the ROC curve were .963 (DOCL), .940 (DOMG), .880 (CCA), .867 (WBA), and .951 (BOA) (P < .05). The cut-off criteria were ≥ 7 mm (DOCL), ≥ 8 mm (DOMG), ≤ 145° (CCA), ≥ 142° (WBA), and ≥ 136° (BOA). The diagnostic accuracies were .904 (DOCL), .870 (DOMG), .844 (CCA), .810 (WBA), and .899 (BOA).

Conclusion

The DOCL and BOA presented the highest diagnostic accuracy for BI type B.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.

Keywords

Basilar invagination Chamberlain line Boogaard’s angle Diagnostic accuracy Roc curve 

Abbreviations

BI

Basilar invagination

CVJ

Craniovertebral junction

DOCL

Apex distance of the odontoid to Chamberlain’s line

DOMG

Apex distance of the odontoid to McGregor’s line

CCA

Clivus canal angle

WBA

Welcker’s basal angle

BOA

Boogaard’s angle

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Supplementary material

586_2018_5841_MOESM1_ESM.pptx (177 kb)
Supplementary material 1 (PPTX 176 kb)

References

  1. 1.
    Silva JAG, Santos AA, Melo LRS, Araújo AF, Regueira GP (2011) Posterior fossa decompression with tonsillectomy in 104 cases of basilar impression, Chiari malformation and/or syringomyelia. Arq Neuropsiquiatr 69:817–823CrossRefGoogle Scholar
  2. 2.
    Goel A (2004) Treatment of basilar invagination by atlantoaxial joint distraction and direct lateral mass fixation. J Neurosurg Spine 1:281–286CrossRefGoogle Scholar
  3. 3.
    Goel A (2009) Basilar invagination, Chiari malformation, syringomyelia: a review. Neurol India 57:235–246CrossRefGoogle Scholar
  4. 4.
    Goel A (2017) Short neck, short head, short spine, and short body height—Hallmarks of basilar invagination. J Craniovertebr Junction Spine 8:165–167CrossRefGoogle Scholar
  5. 5.
    Pang D, Thompson DNP (2011) Embryology and bony malformations of the craniovertebral junction. Childs Nerv Syst 27:523–564CrossRefGoogle Scholar
  6. 6.
    Shah A, Serchi E (2016) Management of basilar invagination: a historical perspective. J Craniovertebr Junction Spine 7:96–100CrossRefGoogle Scholar
  7. 7.
    Forlino A, Marini JC (2016) Osteogenesis imperfecta. Lancet 387:1657–1671CrossRefGoogle Scholar
  8. 8.
    Silva JAG, Brito JCF, Nóbrega PV, Costa MDL, Souza ABL (1994) Achados cirúrgicos em 260 casos de impressão basilar e/ou formação de Arnold-Chiari. Arq Neuropsiquiatr 52:343–359CrossRefGoogle Scholar
  9. 9.
    Batzdorf U, Mcarthur DL, Bentson JR (2013) Surgical treatment of Chiari malformation with and without syringomyelia: experience with 177 adult patients. J Neurosurg 118:232–242CrossRefGoogle Scholar
  10. 10.
    Bollo RJ, Riva-Cambrin J, Brockmeyer MM, Brockmeyer DL (2012) Complex Chiari malformations in children: an analysis of preoperative risk factors for occipitocervical fusion. J Neurosurg Pediatr 10:134–141CrossRefGoogle Scholar
  11. 11.
    Chamberlain WE (1939) Basilar impression (platybasis): a bizarre developmental anomaly of the occipital bone and upper cervical spine with striking and misleading neurologic manifestations. Yale J Biol Med 11:487–496PubMedPubMedCentralGoogle Scholar
  12. 12.
    McGregor M (1948) The significance of certain measurements of the skull in the diagnosis of basilar impression. Br J Radiol 21:171–181CrossRefGoogle Scholar
  13. 13.
    Riew KD, Hilibrand AS, Palumbo MA, Sethi N, Bohlman HH (2001) Diagnosing basilar invagination in the rheumatoid patient. The reliability of radiographic criteria. J Bone Joint Surg Am 83:194–200CrossRefGoogle Scholar
  14. 14.
    Smoker WR (1994) Craniovertebral junction: normal anatomy, craniometry, and congenital anomalies. Radiographics 14:255–277CrossRefGoogle Scholar
  15. 15.
    Smoker WR, Khanna G (2008) Imaging the craniocervical junction. Childs Nerv Syst 24:1123–1145CrossRefGoogle Scholar
  16. 16.
    Cronin CG, Lohan DG, Mhuircheartigh JN, Meehan CP, Murphy JM, Roche C (2007) MRI evaluation and measurement of the normal odontoid peg position. Clin Radiol 62:897–903CrossRefGoogle Scholar
  17. 17.
    Dufton JA, Habeed SY, Heran MK, Mikulis DJ, Islam O (2011) Posterior fossa measurements in patients with and without Chiari I malformation. Can J Neurol Sci 38:452–455CrossRefGoogle Scholar
  18. 18.
    Ferreira JA, Botelho RV (2015) The odontoid process invagination in normal subjects, Chiari malformation and Basilar invagination patients: pathophysiologic correlations with angular craniometry. Surg Neurol Int 6:118CrossRefGoogle Scholar
  19. 19.
    Markunas CA, Lock E, Soldano K, Cope H, Ding CKC, Enterline DS, Grant G, Fuchs H, Ashley-Koch AE, Gregorycorresponding SG (2014) Identification of Chiari Type I Malformation subtypes using whole genome expression profiles and cranial base morphometrics. BMC Med Genomics 25:7–39Google Scholar
  20. 20.
    Cheung MS, Arponen H, Roughley P, Azouz ME, Glorieux FH, Waltimo-Sirén J, Rauch F (2011) Cranial base abnormalities in osteogenesis imperfecta: phenotypic and genotypic determinants. J Bone Miner Res 26:405–413CrossRefGoogle Scholar
  21. 21.
    Çoban G (2014) The importance of craniovertebral and cervicomedullary angles in cervicogenic headache. Diagn Interv Radiol 20:172–177PubMedGoogle Scholar
  22. 22.
    Henderson FC Sr, Henderson FC Jr, Wilson WA, Mark AS, Koby M (2017) Utility of the clivo-axial angle in assessing brainstem deformity: pilot study and literature review. Neurosurg Rev.  https://doi.org/10.1007/s10143-017-0830-3 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, Lijmer JG, Moher D, Rennie D, de Vet HC, Kressel HY, Rifai N, Golub RM, Altman DG, Hooft L, Korevaar DA, Cohen JF (2015) STARD 2015—an updated list of essential items for reporting diagnostic accuracy studies. BMJ 351:h5527CrossRefGoogle Scholar
  24. 24.
    Gray Strandring S (2008) Anatomia: a base anatômica para a prática clínica. Elsevier, Rio de JaneiroGoogle Scholar
  25. 25.
    Quisling RG, Quisling SG, Mickle JP (1993) Obex/nucleus gracilis position: its role as a marker for the cervicomedullary junction. Pediatr Neurosurg 19:143–150CrossRefGoogle Scholar
  26. 26.
    Zweig MH, Campbell L (1993) Receiver-operating characteristic (ROC) Plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39:561–577PubMedGoogle Scholar
  27. 27.
    Obuchowski NA (2003) Receiver operating characteristic curves and their use in radiology. Radiology 229:3–8CrossRefGoogle Scholar
  28. 28.
    Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36CrossRefGoogle Scholar
  29. 29.
    Cronin CG, Lohan DG, Mhuircheartigh JN, Meehan CP, Murphy J, Roche C (2009) CT evaluation of Chamberlain’s, McGregor’s, and McRae’s skull-base lines. Clin Radiol 64:64–69CrossRefGoogle Scholar
  30. 30.
    Batista UC, Joaquim AF, Fernandes YB, Mathias RN, Ghizoni E, Tedeschi H (2015) Computed tomography evaluation of the normal craniocervical junction craniometry in 100 asymptomatic patients. Neurosurg Focus 38:E5CrossRefGoogle Scholar
  31. 31.
    Mzumara SS, Kimani NM, Onyambu CK (2012) Evaulating Chamberlain’s, McGregor’s, and McRae’s skull-base lines using multi detector computerized tomography. East Afr Med J 89:272–277PubMedGoogle Scholar
  32. 32.
    Saunders WMM (1943) Basilar impression: the position of the normal odontoid. Radiology 41:589–590CrossRefGoogle Scholar
  33. 33.
    Kwong Y, Rao N, Latief K (2011) Craniometric measurements in the assessment of craniovertebral settling: are they still relevant in the age of cross-sectional imaging? Am J Roentgenol 196:w421–w425CrossRefGoogle Scholar
  34. 34.
    Frade HC, França CCNL, Nascimento JJC, Holanda MMA, Neto EJS, Araújo-Neto SA (2017) Cranio-vertebral transition assessment by magnetic resonance imaging in a sample of a northeast Brazilian population. Arq Neuropsiquiatr 75:419–423CrossRefGoogle Scholar
  35. 35.
    Tassanawipas A, Mokkhavesa S, Chatchavong S, Worawittayawong P (2005) Magnetic resonance imaging study of the craniocervical junction. J Orthop Surg 13:228–231CrossRefGoogle Scholar
  36. 36.
    Khanna G, Sato Y (2005) Imaging of the craniovertebral junction. Oper Tech Neurosurg 8:131–142CrossRefGoogle Scholar
  37. 37.
    Yochum T, Rowe L (1996) Essentials of skeletal radiology, 2nd edn. Williams & Wilkins, BaltimoreGoogle Scholar
  38. 38.
    Nascimento JJC, Carreiro NMF, Oliveira GT, Ribeiro ECO, Holanda MMA, Neto EJS, Araújo-Neto SA (2018) Relationship between basilar invagination and brachycephaly in Northeastern Brazil. Eur J Radiol 104:58–63CrossRefGoogle Scholar
  39. 39.
    Goel A, Jain S (2018) A radiological evaluation of 510 cases of basilar invagination with evidence of atlantoaxial instability (group A basilar invagination). World Neurosurg 110:533–543CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • José J. C. Nascimento
    • 1
  • Eulâmpio J. S. Neto
    • 5
  • Carlos F. Mello-Junior
    • 6
  • Marcelo M. Valença
    • 1
    • 2
    • 3
  • Severino A. Araújo-Neto
    • 6
  • Paula R. B. Diniz
    • 1
    • 3
    • 4
  1. 1.Postgraduate Program in NeuropsychiatryFederal University of PernambucoRecifeBrazil
  2. 2.Neurology and Neurosurgery UnitClinics Hospital, Federal University of PernambucoRecifeBrazil
  3. 3.Internal Medicine DepartmentClinics Hospital, Federal University of PernambucoRecifeBrazil
  4. 4.Telehealth UnitClinics Hospital, Federal University of PernambucoRecifeBrazil
  5. 5.Department of MorphologyFederal University of ParaíbaJoão PessoaBrazil
  6. 6.Diagnostic imaging, Internal MedicineFederal University of ParaíbaJoão PessoaBrazil

Personalised recommendations