Advertisement

Relation of lumbar sympathetic chain to the open corridor of retroperitoneal oblique approach to lumbar spine: an MRI study

  • A. Mahatthanatrakul
  • T. Itthipanichpong
  • C. Ratanakornphan
  • N. Numkarunarunrote
  • W. Singhatanadgige
  • W. Yingsakmongkol
  • W. Limthongkul
Original Article

Abstract

Background

Retroperitoneal oblique approach to lumbar spine used surgical corridor between psoas muscle and aorta for exposure to anterior part of lumbar spine. Lumbar sympathetic chain (LSC) runs in the corridor to make it a structure at risk of injury.

Research question

Does LSC relationship with surgical corridor for minimally invasive retroperitoneal anterolateral oblique approach change in different intervertebral disc level?

Methods

Left LSC was identified in axial magnetic resonance imaging images at L2–3, L3–4 and L4–5 intervertebral disc levels of 144 patients. Distances between LSC and left psoas muscle and aorta were recorded.

Results

Mean age of the patients was 62.3 years. LSC was identifiable in 90.9% of levels. Distance between LSC and psoas muscle at L2–3, L3–4 and L4–5 was 4.0 mm, 4.7 mm and 5.2 mm. Statistical difference was found between L2–3 and L4–5 level (p = 0.006). Distance between LSC and aorta at each level was 12.4 mm, 12.3 mm and 10.6 mm without statistical difference. In non-scoliosis group distance between LSC and psoas muscle at each level was 3.1 mm, 3.3 mm and 4.0 mm. Statistical difference was found between L2–3 and L4–5 level (p = 0.012) and between L3–4 and L4–5 level (p = 0.041). Distance between LSC and aorta at each level was 11.9 mm, 11.4 mm and 10.2 mm. Statistical difference was found between L2–3 and L4–5 disc level (p = 0.039).

Conclusion

LSC moves away from psoas muscle and becomes closer to aorta in L4–5 disc level.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.

Keywords

Oblique lumbar interbody fusion Lumbar sympathetic chain Magnetic Resonance Imaging Oblique corridor Minimally invasive surgical approach 

Notes

Compliance with ethical standards

Conflict of interest

W. Limthongkul is a consultant for Medtronic. There is no funding or grants related to this research.

Supplementary material

586_2018_5779_MOESM1_ESM.pptx (164 kb)
Supplementary material 1 (PPTX 164 kb)

References

  1. 1.
    Mayer HM (1997) A new microsurgical technique for minimally invasive anterior lumbar interbody fusion. Spine 22(6):691–699 (discussion 700) CrossRefGoogle Scholar
  2. 2.
    Davis TT, Hynes RA, Fung DA, Spann SW, MacMillan M, Kwon B, Liu J, Acosta F, Drochner TE (2014) Retroperitoneal oblique corridor to the L2–S1 intervertebral discs in the lateral position: an anatomic study. J Neurosurg Spine 21(5):785–793.  https://doi.org/10.3171/2014.7.SPINE13564 CrossRefPubMedGoogle Scholar
  3. 3.
    Molinares DM, Davis TT, Fung DA (2016) Retroperitoneal oblique corridor to the L2–S1 intervertebral discs: an MRI study. J Neurosurg Spine 24(2):248–255.  https://doi.org/10.3171/2015.3.SPINE13976 CrossRefPubMedGoogle Scholar
  4. 4.
    Nandyala SV, Fineberg SJ, Pelton M, Singh K (2014) Minimally invasive transforaminal lumbar interbody fusion: one surgeon’s learning curve. Spine J 14(8):1460–1465.  https://doi.org/10.1016/j.spinee.2013.08.045 CrossRefPubMedGoogle Scholar
  5. 5.
    Sclafani JA, Kim CW (2014) Complications associated with the initial learning curve of minimally invasive spine surgery: a systematic review. Clin Orthop Relat Res 472(6):1711–1717.  https://doi.org/10.1007/s11999-014-3495-z CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kim JS, Choi WS, Sung JH (2016) 314 Minimally invasive oblique lateral interbody fusion for L4–5: clinical outcomes and perioperative complications. Neurosurgery 63(Suppl 1):190–191.  https://doi.org/10.1227/01.neu.0000489803.65103.84 CrossRefGoogle Scholar
  7. 7.
    Mehren C, Mayer HM, Zandanell C, Siepe CJ, Korge A (2016) The oblique anterolateral approach to the lumbar spine provides access to the lumbar spine with few early complications. Clin Orthop Relat Res 474(9):2020–2027.  https://doi.org/10.1007/s11999-016-4883-3 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Abe K, Orita S, Mannoji C, Motegi H, Aramomi M, Ishikawa T, Kotani T, Akazawa T, Morinaga T, Fujiyoshi T, Hasue F, Yamagata M, Hashimoto M, Yamauchi T, Eguchi Y, Suzuki M, Hanaoka E, Inage K, Sato J, Fujimoto K, Shiga Y, Kanamoto H, Yamauchi K, Nakamura J, Suzuki T, Hynes RA, Aoki Y, Takahashi K, Ohtori S (2017) Perioperative complications in 155 patients who underwent oblique lateral interbody fusion surgery: perspectives and indications from a retrospective, multicenter survey. Spine 42(1):55–62.  https://doi.org/10.1097/BRS.0000000000001650 CrossRefPubMedGoogle Scholar
  9. 9.
    Edwards EA (1951) Operative anatomy of the lumbar sympathetic chain. Angiology 2(3):184–198CrossRefGoogle Scholar
  10. 10.
    Rocco AG, Palombi D, Raeke D (1995) Anatomy of the lumbar sympathetic chain. Reg Anesth 20(1):13–19PubMedGoogle Scholar
  11. 11.
    Feigl GC, Kastner M, Ulz H, Breschan C, Pixner T, Dreu M, Umschaden HW, Likar R (2013) The lumbar sympathetic trunk: its visibility and distance to two anatomical landmarks. Surg Radiol Anat SRA 35(2):99–106.  https://doi.org/10.1007/s00276-012-1015-y CrossRefPubMedGoogle Scholar
  12. 12.
    Schulte TL, Adolphs B, Oberdiek D, Osada N, Liljenqvist U, Filler TJ, Marziniak M, Bullmann V (2010) Approach-related lesions of the sympathetic chain in anterior correction and instrumentation of idiopathic scoliosis. Eur Spine J 19(9):1558–1568.  https://doi.org/10.1007/s00586-010-1455-1 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kasliwal MK, Deutsch H (2011) Anhidrosis after anterior retroperitoneal approach for L4–L5 artificial disc replacement. J Clin Neurosci 18(7):990–991.  https://doi.org/10.1016/j.jocn.2010.11.022 CrossRefPubMedGoogle Scholar
  14. 14.
    Hrabalek L, Sternbersky J, Adamus M (2015) Risk of sympathectomy after anterior and lateral lumbar interbody fusion procedures. Biomed Pap Med Fac Univ Palacky Olomouc Czechoslovakia 159(2):318–326.  https://doi.org/10.5507/bp.2013.083 CrossRefGoogle Scholar
  15. 15.
    Silvestre C, Mac-Thiong JM, Hilmi R, Roussouly P (2012) Complications and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lumbar interbody fusion in 179 patients. Asian Spine J 6(2):89–97.  https://doi.org/10.4184/asj.2012.6.2.89 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Theologis AA, Mundis GM Jr., Nguyen S, Okonkwo DO, Mummaneni PV, Smith JS, Shaffrey CI, Fessler R, Bess S, Schwab F, Diebo BG, Burton D, Hart R, Deviren V, Ames C, for the International Spine Study G (2017) Utility of multilevel lateral interbody fusion of the thoracolumbar coronal curve apex in adult deformity surgery in combination with open posterior instrumentation and L5–S1 interbody fusion: a case-matched evaluation of 32 patients. J Neurosurg Spine 26(2):208–219.  https://doi.org/10.3171/2016.8.spine151543 CrossRefPubMedGoogle Scholar
  17. 17.
    Liu L, Liang Y, Zhang H, Wang H, Guo C, Pu X, Zhang C, Wang L, Wang J, Lv Y, Ren Z, Zhou Q, Deng Z (2016) Imaging anatomical research on the operative windows of oblique lumbar interbody fusion. PLoS ONE 11(9):e0163452.  https://doi.org/10.1371/journal.pone.0163452 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rajaraman V, Vingan R, Roth P, Heary RF, Conklin L, Jacobs GB (1999) Visceral and vascular complications resulting from anterior lumbar interbody fusion. J Neurosurg Spine 91(1):60–64.  https://doi.org/10.3171/spi.1999.91.1.0060 CrossRefGoogle Scholar
  19. 19.
    Woo JH, Park HS (2014) Successful treatment of severe sympathetically maintained pain following anterior spine surgery. J Korean Neurosurg Soc 56(1):66–70.  https://doi.org/10.3340/jkns.2014.56.1.66 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Samudrala S, Khoo LT, Rhim SC, Fessler RG (1999) Complications during anterior surgery of the lumbar spine: an anatomically based study and review. Neurosurg Focus 7(6):e9.  https://doi.org/10.3171/foc.1999.7.6.10 CrossRefPubMedGoogle Scholar
  21. 21.
    Makanji HS, Le H, Wood KB, Jenis LG, Cha TD (2017) Morphometric analysis of the retroperitoneal vessels with respect to lateral access surgery in adult scoliosis. Clin Spine Surg.  https://doi.org/10.1097/bsd.0000000000000524 CrossRefPubMedGoogle Scholar
  22. 22.
    Regev GJ, Chen L, Dhawan M, Lee YP, Garfin SR, Kim CW (2009) Morphometric analysis of the ventral nerve roots and retroperitoneal vessels with respect to the minimally invasive lateral approach in normal and deformed spines. Spine 34(12):1330–1335.  https://doi.org/10.1097/BRS.0b013e3181a029e1 CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang F, Xu H, Yin B, Tao H, Yang S, Sun C, Wang Y, Yin J, Shao M, Wang H, Xia X, Ma X, Lu F, Jiang J (2017) Does right lateral decubitus position change retroperitoneal oblique corridor? a radiographic evaluation from L1 to L5. Eur Spine J 26(3):646–650.  https://doi.org/10.1007/s00586-016-4645-7 CrossRefPubMedGoogle Scholar
  24. 24.
    Deukmedjian AR, Le TV, Dakwar E, Martinez CR, Uribe JS (2012) Movement of abdominal structures on magnetic resonance imaging during positioning changes related to lateral lumbar spine surgery: a morphometric study—clinical article. J Neurosurg Spine 16(6):615–623.  https://doi.org/10.3171/2012.3.SPINE1210 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • A. Mahatthanatrakul
    • 1
  • T. Itthipanichpong
    • 2
  • C. Ratanakornphan
    • 3
  • N. Numkarunarunrote
    • 3
  • W. Singhatanadgige
    • 2
  • W. Yingsakmongkol
    • 2
  • W. Limthongkul
    • 2
  1. 1.Department of Orthopaedics, Faculty of MedicineNaresuan University HospitalPhitsanulokThailand
  2. 2.Department of Orthopaedics, Faculty of MedicineChulalongkorn UniversityBangkokThailand
  3. 3.Department of Radiology, Faculty of MedicineChulalongkorn UniversityBangkokThailand

Personalised recommendations