Advertisement

CT for thoracic and lumbar spine fractures: Can CT findings accurately predict posterior ligament complex injury?

  • Bharti Khurana
  • Luciano M. Prevedello
  • Christopher M. Bono
  • Erwin Lin
  • Steven T. McCormack
  • Hamdi Jimale
  • Mitchel B. Harris
  • Aaron D. Sodickson
Original Article

Abstract

Purpose

This study aims to determine whether secondary CT findings can predict posterior ligament complex (PLC) injury in patients with acute thoracic (T) or lumbar (L) spine fractures.

Methods

This is a retrospective study of 105 patients with acute thoracic and lumbar spine fractures on CT, with MRI as the reference standard for PLC injury. Three readers graded CT for facet joint alignment (FJA), widening (FJW), pedicle or lamina fracture (PLF), spinous fracture (SPF), interspinous widening (ISW), vertebral translation (VBT), and posterior endplate fracture (PEF). Univariate and multivariate logistic regression analyses were performed separately for each reader to test for associations between CT and PLC injury, and diagnostic performance of CT was calculated.

Results

Fifty-three of 105 patients had PLC injury by MRI. Statistically significant predictors of PLC injury were VBT, PLF, ISW, and SPF. Using these four CT findings, odds of PLC injury ranged from 3.8 to 5.6 for one positive finding, but increased to 13.6–25.1 for two or more. At least one positive CT finding was found to yield average sensitivity of 82% and specificity 59%, while two or more yielded sensitivity 46% and specificity 88%.

Conclusion

While no individual CT finding is sufficiently accurate to diagnose or exclude PLC injury, greater the number of positive CT findings (VBT, PLF, ISW, and SPF), the higher the odds of PLC injury. The presence of a single abnormal CT finding may warrant confirmatory MRI for PLC injury, while two or more CT findings may have adequate specificity to avoid need for MRI prior to surgical intervention.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.

Keywords

Spine trauma Posterior ligament complex Spine stability Spine fracture Compression fracture 

Notes

Acknowledgements

The authors want to thank Heidi Miracle for her assistance with data analysis.

Compliance with ethical standards

Conflict of interest

The study was approved by the IRB, and the authors have no relevant conflicts of interest or copyright constraints.

Supplementary material

586_2018_5712_MOESM1_ESM.pptx (29.5 mb)
Supplementary material 1 (PPTX 30238 kb)

References

  1. 1.
    Pizones J, Castillo E (2013) Assessment of acute thoracolumbar fractures: challenges in multidetector computed tomography and added value of emergency MRI. Semin Musculoskelet Radiol 17(4):389–395.  https://doi.org/10.1055/s-0033-1356468 CrossRefPubMedGoogle Scholar
  2. 2.
    Pizones J, Izquierdo E, Álvarez P et al (2011) Impact of magnetic resonance imaging on decision making for thoracolumbar traumatic fracture diagnosis and treatment. Eur Spine J 20:390–396CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Vaccaro AR, Lehman RA Jr, Hurlbert RJ et al (2005) A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine 30(20):2325CrossRefPubMedGoogle Scholar
  4. 4.
    Khurana B, Sheehan SE, Sodickson A, Bono CM, Harris MB (2013) Traumatic thoracolumbar spine injuries: what the spine surgeon wants to know. Radiogr Rev Publ Radiol Soc N Am Inc 33(7):2031–2046.  https://doi.org/10.1148/rg.337135018 CrossRefGoogle Scholar
  5. 5.
    Radcliff K, Kepler CK, Rubin TA et al (2012) Does the load-sharing classification predict ligamentous injury, neurological injury, and the need for surgery in patients with thoracolumbar burst fractures? J Neurosurg Spine 16(6):534–538CrossRefPubMedGoogle Scholar
  6. 6.
    Oner FC, van Gils APG, Faber JAJ, Dhert WJA, Verbout AJ (2002) Some complications of common treatment schemes of horacolumbar spine fractures can be predicted with magnetic resonance imaging: prospective study of 53 patients with 71 fractures. Spine 27(6):629–636CrossRefPubMedGoogle Scholar
  7. 7.
    Radcliff K, Su BW, Kepler CK et al (2012) Correlation of posterior ligamentous complex injury and neurological injury to loss of vertebral body height, kyphosis, and canal compromise. Spine 37(13):1142–1150CrossRefPubMedGoogle Scholar
  8. 8.
    Winklhofer S, Thekkumthala-Sommer M, Schmidt D et al (2013) Magnetic resonance imaging frequently changes classification of acute traumatic thoracolumbar spine injuries. Skeletal Radiol 42(6):779–786.  https://doi.org/10.1007/s00256-012-1551-x CrossRefPubMedGoogle Scholar
  9. 9.
    Lee JY, Vaccaro AR, Schweitzer KM et al (2007) Assessment of injury to the thoracolumbar posterior ligamentous complex in the setting of normal-appearing plain radiography. Spine J 7(4):422–427CrossRefPubMedGoogle Scholar
  10. 10.
    Looby S, Flanders A (2012) MRI of spinal cord injury. Contemp Diagn Radiol 35(1):1CrossRefGoogle Scholar
  11. 11.
    Vaccaro AR, Lee JY, Schweitzer KM et al (2006) Assessment of injury to the posterior ligamentous complex in thoracolumbar spine trauma. Spine J 6(5):524–528CrossRefPubMedGoogle Scholar
  12. 12.
    Lee HM, Kim HS, Kim DJ, Suk KS, Park JO, Kim NH (2000) Reliability of magnetic resonance imaging in detecting posterior ligament complex injury in thoracolumbar spinal fractures. Spine 25(16):2079–2084CrossRefPubMedGoogle Scholar
  13. 13.
    Bagley LJ (2006) Imaging of spinal trauma. Radiol Clin North Am 44(1):1–12CrossRefPubMedGoogle Scholar
  14. 14.
    Terk MR, Hume-Neal M, Fraipont M, Ahmadi J, Colletti PM (1997) Injury of the posterior ligament complex in patients with acute spinal trauma: evaluation by MR imaging. AJR Am J Roentgenol 168(6):1481–1486.  https://doi.org/10.2214/ajr.168.6.9168711 CrossRefPubMedGoogle Scholar
  15. 15.
    Bozzo A, Marcoux J, Radhakrishna M, Pelletier J, Goulet B (2011) The role of magnetic resonance imaging in the management of acute spinal cord injury. J Neurotrauma 28(8):1401–1411CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Rihn JA, Yang N, Fisher C et al (2010) Using magnetic resonance imaging to accurately assess injury to the posterior ligamentous complex of the spine: a prospective comparison of the surgeon and radiologist. J Neurosurg Spine 12(4):391–396CrossRefPubMedGoogle Scholar
  17. 17.
    Vaccaro AR, Rihn JA, Saravanja D et al (2009) Injury of the posterior ligamentous complex of the thoracolumbar spine: a prospective evaluation of the diagnostic accuracy of magnetic resonance imaging. Spine 34(23):E841–E847.  https://doi.org/10.1097/BRS.0b013e3181bd11be CrossRefPubMedGoogle Scholar
  18. 18.
    Salgado A, Pizones J, Sánchez-Mariscal F, Alvarez P, Zúñiga L, Izquierdo E (2013) MRI reliability in classifying thoracolumbar fractures according to AO classification. Orthopedics 36(1):e75–e78.  https://doi.org/10.3928/01477447-20121217-22 CrossRefPubMedGoogle Scholar
  19. 19.
    Mirvis SE, Geisler FH, Jelinek JJ, Joslyn JN, Gellad F (1988) Acute cervical spine trauma: evaluation with 1.5-T MR imaging. Radiology 166(3):807–816.  https://doi.org/10.1148/radiology.166.3.3277249 CrossRefPubMedGoogle Scholar
  20. 20.
    Jackson ER, Lador R, Ben-Galim PJ, Reitman CA, Hipp JA (2011) Reference data for interpreting widening between spinous processes in the lumbar spine. Spine J Off J North Am Spine Soc 11(4):336–339.  https://doi.org/10.1016/j.spinee.2011.02.005 CrossRefGoogle Scholar
  21. 21.
    Hiyama A, Watanabe M, Katoh H, Sato M, Nagai T, Mochida J (2015) Relationships between posterior ligamentous complex injury and radiographic parameters in patients with thoracolumbar burst fractures. Injury 46(2):392–398.  https://doi.org/10.1016/j.injury.2014.10.047 CrossRefPubMedGoogle Scholar
  22. 22.
    Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3(4):184–201CrossRefPubMedGoogle Scholar
  23. 23.
    Joaquim AF, Fernandes YB, Cavalcante RAC, Fragoso RM, Honorato DC, Patel AA (2011) Evaluation of the thoracolumbar injury classification system in thoracic and lumbar spinal trauma. Spine 36(1):33CrossRefPubMedGoogle Scholar
  24. 24.
    van Middendorp JJ, Patel AA, Schuetz M, Joaquim AF (2012) The precision, accuracy and validity of detecting posterior ligamentous complex injuries of the thoracic and lumbar spine: a critical appraisal of the literature. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc.  https://doi.org/10.1007/s00586-012-2602-7 CrossRefGoogle Scholar
  25. 25.
    Pizones J, Zúñiga L, Sánchez-Mariscal F, Álvarez P, Gómez-Rice A, Izquierdo E (2012) MRI study of post-traumatic incompetence of posterior ligamentous complex: importance of the supraspinous ligament. Prospective study of 74 traumatic fractures. Eur Spine J 21(11):2222–2231CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Pizones J, Izquierdo E, Sánchez-Mariscal F, Zúñiga L, Álvarez P, Gómez-Rice A (2012) Sequential damage assessment of the different components of the posterior ligamentous complex after magnetic resonance imaging interpretation: prospective study 74 traumatic fractures. Spine 37(11):E662CrossRefPubMedGoogle Scholar
  27. 27.
    Dai L-Y, Ding W-G, Wang X-Y, Jiang L-S, Jiang S-D, Xu H-Z (2009) Assessment of ligamentous injury in patients with thoracolumbar burst fractures using MRI. J Trauma 66(6):1610–1615.  https://doi.org/10.1097/TA.0b013e3181848206 CrossRefPubMedGoogle Scholar
  28. 28.
    Haba H, Taneichi H, Kotani Y et al (2003) Diagnostic accuracy of magnetic resonance imaging for detecting posterior ligamentous complex injury associated with thoracic and lumbar fractures. J Neurosurg 99(1 Suppl):20–26PubMedGoogle Scholar
  29. 29.
    Gehweiler JA, Daffner RH, Osborne RL (1981) Relevant signs of stable and unstable thoracolumbar vertebral column trauma. Skeletal Radiol 7(3):179–183CrossRefPubMedGoogle Scholar
  30. 30.
    Daffner RH, Deeb ZL, Rothfus WE (1987) The posterior vertebral body line: importance in the detection of burst fractures. AJR Am J Roentgenol 148(1):93–96.  https://doi.org/10.2214/ajr.148.1.93 CrossRefPubMedGoogle Scholar
  31. 31.
    Petersilge CA, Pathria MN, Emery SE, Masaryk TJ (1995) Thoracolumbar burst fractures: evaluation with MR imaging. Radiology 194(1):49–54.  https://doi.org/10.1148/radiology.194.1.7997581 CrossRefPubMedGoogle Scholar
  32. 32.
    Rajasekaran S, Maheswaran A, Aiyer SN et al (2016) Prediction of posterior ligamentous complex injury in thoracolumbar fractures using non-MRI imaging techniques. Int Orthop (SICOT) 40:1075–1081CrossRefGoogle Scholar
  33. 33.
    Kwon KY, Park HJ, Shin JS et al (2017) Another diagnostic tool in thoracolumbar posterior ligament complex injury: interspinous distance ratio. Eur Spine J (Germany) 26(5):1447–1453CrossRefGoogle Scholar
  34. 34.
    Chen JX, Goswami A, Xu DL et al (2017) The radiologic assessment of posterior ligamentous complex injury in patients with thoracolumbar fracture. Eur Spine J (Germany) 26(5):p1454–p1462CrossRefGoogle Scholar
  35. 35.
    Sixta S, Moore FO, Ditillo MF et al (2012) Screening for thoracolumbar spinal injuries in blunt trauma: an Eastern Association for the Surgery of Trauma practice management guideline. J Trauma Acute Care Surg 73(5 Suppl 4):S326–S332.  https://doi.org/10.1097/TA.0b013e31827559b8 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of RadiologyBrigham and Women’s HospitalBostonUSA
  2. 2.Department of RadiologyOhio State UniversityColumbusUSA
  3. 3.Department of OrthopedicsBrigham and Women’s HosptialBostonUSA
  4. 4.New YorkUSA
  5. 5.WestonUSA
  6. 6.Department of OrthopedicsMassachusetts General HospitalBostonUSA

Personalised recommendations