European Spine Journal

, Volume 27, Issue 8, pp 1895–1904 | Cite as

In vitro investigation of two connector types for continuous rod construct to extend lumbar spinal instrumentation

  • Bastian Welke
  • Michael Schwarze
  • Christof Hurschler
  • Dennis Nebel
  • Nadine Bergmann
  • Dorothea Daentzer
Original Article



Instrumentation of the lumbar spine is a common procedure for treating pathologic conditions. Studies have revealed the risks of pathologies in the adjacent segments, with the incidence rate being up to 36.1%. Revision procedures are often required, including extension of the instrumentation by the use of connectors to adjacent levels. The aim of this study was to determine the stiffness of side-to-side and end-to-end connectors for comparison with the use of continuous rods.


Ten human lumbar spine specimens (L1–S1) were tested about the three axes under pure moment loading of ± 7.5 Nm. Nine conditions were used to investigate the functions of the extensions for different instrumentation lengths (L3–S1 and L2–S1) and different connector levels (L3/4 and L2/3). The intersegmental range of motion (iROM) and intersegmental neutral zone as well as total range of motion (tROM) and total neutral zone (tNZ) were analyzed.


The application of the spinal system significantly decreased the tROMs (− 44 to − 83%) and iROMs in levels L2/3 (− 56 to − 94%) and L3/4 (− 68 to − 99%) in all the tested directions, and the tNZ under flexion/extension (− 63 to − 71%) and axial rotation (− 34 to − 72%). These decreases were independent of the employed configuration (p < 0.05). The only significant changes in the iROM were observed under lateral bending between the continuous rod and the side-to-side connector at level L3/4 (p = 0.006).


From a biomechanical viewpoint, the tested connectors are comparable to continuous rods in terms of ROM and NZ.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.


Lumbar spine In vitro biomechanics Spinal fixation Rod system Connector 



The authors thank Medtronic Inc. for providing the implants and instrumentations used in this study.

Compliance with ethical standards

Conflict of interest

The authors declare no potential conflict of interest.

Supplementary material

586_2018_5664_MOESM1_ESM.pptx (316 kb)
Supplementary material 1 (PPTX 315 kb)


  1. 1.
    Chow DHK, Luk KDK, Evans JH, Leong JCY (1996) Effects of short anterior lumbar interbody fusion on biomechanics of neighboring unfused segments. Spine (Phila Pa 1976) 21:549–555. CrossRefGoogle Scholar
  2. 2.
    Herkowitz HN, Abraham DJ, Todd JA (1999) Management of degenerative disc disease above an L5–Sl segment requiring arthrodesis. Spine (Phila Pa 1976) 24:1268–1270CrossRefGoogle Scholar
  3. 3.
    Kim YE, Goel VK, Weinstein JN, Lim TH (1991) Effect of disc degeneration at one level on the adjacent level in axial mode. Spine (Phila Pa 1976) 16:331–335CrossRefGoogle Scholar
  4. 4.
    Phillips FM, Reuben J, Wetzel FT (2002) Intervertebral disc degeneration adjacent to a lumbar fusion: an experimental rabbit model. J Bone Joint Surg Br 84:289–294CrossRefPubMedGoogle Scholar
  5. 5.
    Weinhoffer SL, Guyer RD, Herbert M, Griffith SL (1995) Intradiscal pressure measurements above an instrumented fusion: a cadaveric study. Spine (Phila Pa 1976) 20:526–531CrossRefGoogle Scholar
  6. 6.
    Ha K-Y, Son J-M, Im J-H, Oh I-S (2013) Risk factors for adjacent segment degeneration after surgical correction of degenerative lumbar scoliosis. Indian J Orthop 47:346–351. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Park P, Garton HJ, Gala VC et al (2004) Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine (Phila Pa 1976) 29:1938–1944. CrossRefGoogle Scholar
  8. 8.
    Wilke H, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7:148–154CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Crawford NR, Dickman CA (1997) Construction of local vertebral coordinate systems using a digitizing probe. Technical note. Spine (Phila Pa 1976) 22:559–563. CrossRefGoogle Scholar
  10. 10.
    Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine (Phila Pa 1976) 13:1129–1134CrossRefGoogle Scholar
  11. 11.
    Volkheimer D, Malakoutian M, Oxland TR, Wilke H-J (2015) Limitations of current in vitro test protocols for investigation of instrumented adjacent segment biomechanics: critical analysis of the literature. Eur Spine J 24:1882–1892. CrossRefPubMedGoogle Scholar
  12. 12.
    Wilke HH-J, Wenger K, Claes L (1998) Testing criteria tor spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7:148–154CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Burkus JK, Foley K, Haid R, LeHuec J-C (2001) Surgical Interbody Research Group—radiographic assessment of interbody fusion devices: fusion criteria for anterior lumbar interbody surgery. Neurosurg Focus 10:1–9. CrossRefGoogle Scholar
  14. 14.
    Booth KC, Bridwell KH, Eisenberg BA et al (1999) Minimum 5-year results of degenerative spondylolisthesis treated with decompression and instrumented posterior fusion. Spine (Phila Pa 1976) 24:1721–1727CrossRefGoogle Scholar
  15. 15.
    Frymoyer JW, Hanley EN, Howe J et al (1979) A comparison of radiographic findings in fusion and nonfusion patients ten or more years following lumbar disc surgery. Spine (Phila Pa 1976) 4:435–440CrossRefGoogle Scholar
  16. 16.
    Ghiselli G, Wang JC, Bhatia NN et al (2004) Adjacent segment degeneration in the lumbar spine. J Bone Joint Surg Am 86-A:1497–1503CrossRefPubMedGoogle Scholar
  17. 17.
    Kanayama M, Hashimoto T, Shigenobu K et al (2001) Adjacent-segment morbidity after Graf ligamentoplasty compared with posterolateral lumbar fusion. J Neurosurg 95:5–10PubMedGoogle Scholar
  18. 18.
    Tinetti M, Kumar C (2010) The patient who falls:“It’s always a trade-off”. JAMA 303:258–266. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kuslich SD, Danielson G, Dowdle JD et al (2000) Four-year follow-up results of lumbar spine arthrodesis using the Bagby and Kuslich lumbar fusion cage. Spine (Phila Pa 1976) 25:2656–2662CrossRefGoogle Scholar
  20. 20.
    Guigui P, Lambert P, Lassale B, Deburge A (1997) Long-term outcome at adjacent levels of lumbar arthrodesis. Rev Chir Orthop Reparatrice Appar Mot 83:685–696PubMedGoogle Scholar
  21. 21.
    Ren C, Song Y, Liu L, Xue Y (2014) Adjacent segment degeneration and disease after lumbar fusion compared with motion-preserving procedures: a meta-analysis. Eur J Orthop Surg Traumatol 24:245–253. CrossRefGoogle Scholar
  22. 22.
    Sears WR, Sergides IG, Kazemi N et al (2011) Incidence and prevalence of surgery at segments adjacent to a previous posterior lumbar arthrodesis. Spine J 11:11–20. CrossRefPubMedGoogle Scholar
  23. 23.
    Keck J, Krüger S, Rauschmann M et al. (2016) Biomechanical comparison of different rod-to-rod connectors to a conventional rod system. Eur Spine J 25(11):3792. CrossRefGoogle Scholar
  24. 24.
    Scheer JK, Tang JA, Deviren V et al (2011) Biomechanical analysis of revision strategies for rod fracture in pedicle subtraction osteotomy. Neurosurgery 69:164–172. CrossRefPubMedGoogle Scholar
  25. 25.
    Senatus P, Chinthakunta SR, Vazifeh P, Khalil S (2013) Biomechanical evaluation of a novel posterior integrated clamp that attaches to an existing posterior instrumentation for use in thoracolumbar revision. Asian Spine J 7:1–7. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Penta M, Sandhu A, Fraser RD (1995) Magnetic resonance imaging assessment of disc degeneration 10 years after anterior lumbar interbody fusion. Spine (Phila Pa 1976) 20:743–747CrossRefGoogle Scholar
  27. 27.
    Wai EK, Santos ERG, Morcom RA, Fraser RD (2006) Magnetic resonance imaging 20 years after anterior lumbar interbody fusion. Spine (Phila Pa 1976) 31:1952–1956. CrossRefGoogle Scholar
  28. 28.
    Hilibrand AS, Robbins M (2004) Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? Spine J 4:190–194. CrossRefGoogle Scholar
  29. 29.
    Lund T, Oxland TR (2011) Adjacent level disk disease—is it really a fusion disease? Orthop Clin North Am 42:529–541. CrossRefPubMedGoogle Scholar
  30. 30.
    Malakoutian M, Volkheimer D, Street J et al (2015) Do in vivo kinematic studies provide insight into adjacent segment degeneration? A qualitative systematic literature review. Eur Spine J 24:1865–1881. CrossRefPubMedGoogle Scholar
  31. 31.
    Smith JS, Shaffrey CI, Ames CP et al (2012) Assessment of symptomatic rod fracture after posterior instrumented fusion for adult spinal deformity. Neurosurgery 71:862–867. CrossRefPubMedGoogle Scholar
  32. 32.
    Panjabi MM (2007) Hybrid multidirectional test method to evaluate spinal adjacent-level effects. Clin Biomech 22:257–265. CrossRefGoogle Scholar
  33. 33.
    Crawford NR (2007) Does the “hybrid multidirectional test method” generate quality data or paradoxical data? Clin Biomech (Bristol, Avon). CrossRefGoogle Scholar
  34. 34.
    Panjabi M (2007) Reply. Clin Biomech 22:863–864. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic SurgeryHannover Medical SchoolHannoverGermany
  2. 2.Department of Orthopaedic Surgery, Spine Section, Hannover Medical SchoolDiakovere AnnastiftHannoverGermany

Personalised recommendations