Advertisement

Biomechanical advantages of supplemental accessory and satellite rods with and without interbody cages implantation for the stabilization of pedicle subtraction osteotomy

  • Luigi La Barbera
  • Marco Brayda-Bruno
  • Christian Liebsch
  • Tomaso Villa
  • Andrea Luca
  • Fabio Galbusera
  • Hans-Joachim Wilke
Original Article

Abstract

Purpose

To investigate the effect of anterior interbody cages, accessory and satellite rods usage on primary stability and rod strains for PSO stabilization.

Methods

Seven human cadaveric spine segments (T12-S1) underwent PSO at L4 with posterior fixation from L2 to S1. In vitro flexibility tests were performed under pure moments in flexion/extension (FE), lateral bending (LB) and axial rotation (AR) to determine the range of motion, while measuring the strains on the primary rods with strain gauge rosettes. Six constructs with 2, 3 and 4 rods, with and without interbody cages implantation adjacent to the PSO site, were compared.

Results

All constructs had comparable effects in reducing spine kinematics compared to the intact condition (− 94% in FE and LB; − 80% in AR). Supplementation of 2 rods with lateral accessory rods (4 rods) was the most effective strategy in minimizing primary rod strains, particularly when coupled to cages (p ≤ 0.005; − 50% in FE, − 42% in AR and − 11% in LB); even without cages, the strains were significantly reduced (p ≤ 0.009; − 26%, − 37%, − 9%). The addition of a central satellite rod with laminar hooks (3 rods) effectively reduced rod strains in FE (p ≤ 0.005; − 30%) only in combination with cages.

Conclusions

The study supports the current clinical practice providing a strong biomechanical rationale to recommend 4-rod constructs based on accessory rods combined with cages adjacent to PSO site. Although weaker, the usage of accessory rods without cages and of a central satellite rod with hooks in combination with interbody spacers may also be justified.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.

Keywords

Pedicle subtraction osteotomy Primary stability Revision Rod breakage Implant failure Accessory rods Satellite rod In vitro study Strain gauge Spine Biomechanics 

Notes

Acknowledgements

This study was funded by the Scoliosis Research Society through a New Investigator Grant. The authors gratefully acknowledge DePuy Synthes (Raynham, MA, USA), Medtronic Sofamor Danek (Minneapolis, MN, USA) and NuVasive (San Diego, CA, USA) for providing the implants and surgical tools. The authors gratefully acknowledge Gloria Casaroli Ph.D., Maria Luisa Ruspi, Lisa Flachmüller and Theodor Di Pauli von Treuheim for their assistance during specimens’ preparation. Tito Bassani Ph.D. is gratefully acknowledged for comments regarding statistical analysis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest related to the content of the current study.

Supplementary material

586_2018_5623_MOESM1_ESM.pptx (8 mb)
Supplementary material 1 (PPTX 8226 kb)

References

  1. 1.
    Enercan M, Ozturk C, Kahraman S, Sarıer M, Hamzaoglu A, Alanay A (2013) Osteotomies/spinal column resections in adult deformity. Eur Spine J 22(Suppl 2):254–264.  https://doi.org/10.1007/s00586-012-2313-0 CrossRefGoogle Scholar
  2. 2.
    Dorward IG, Lenke LG (2010) Osteotomies in the posterior-only treatment of complex adult spinal deformity: a comparative review. Neurosurg Focus 28(3):E4.  https://doi.org/10.3171/2009.12.FOCUS09259 CrossRefPubMedGoogle Scholar
  3. 3.
    Bridwell KH (2006) Decision making regarding Smith-Petersen vs. pedicle subtraction osteotomy vs. vertebral column resection for spinal deformity. Spine 31(Suppl 19):171–178CrossRefGoogle Scholar
  4. 4.
    Hyun SJ, Lenke LG, Kim YC, Koester L, Blanke KM (2014) Comparison of standard 2-rod constructs to multiple-rod constructs for fixation across 3-column spinal osteotomies. Spine 39(22):1899–1904.  https://doi.org/10.1097/BRS.0000000000000556 CrossRefPubMedGoogle Scholar
  5. 5.
    O’Neill KR, Lenke LG, Bridwell KH, Neuman BJ, Kim HJ, Archer KR (2015) Factors associated with long-term patient-reported outcomes after three-column osteotomies. Spine J 15(11):2312–2318.  https://doi.org/10.1016/j.spinee.2015.06.044 CrossRefPubMedGoogle Scholar
  6. 6.
    Kim YJ, Bridwell KH, Lenke LG, Cheh G, Baldus C (2007) Results of lumbar pedicle subtraction osteotomies for fixed sagittal imbalance: a minimum 5-year follow-up study. Spine 32(20):2189–2197CrossRefPubMedGoogle Scholar
  7. 7.
    Bridwell KH, Lewis SJ, Lenke LG (2003) Pedicle subtraction osteotomy for the treatment of fixed sagittal imbalance. J Bone Jt Surg Am 85:454–463CrossRefGoogle Scholar
  8. 8.
    Smith JS, Shaffrey CI, Klineberg E, Lafage V, Schwab F, Lafage R, Kim HJ, Hostin R, Mundis GM Jr, Gupta M, Liabaud B, Scheer JK, Diebo BG, Protopsaltis TS, Kelly MP, Deviren V, Hart R, Burton D, Bess S, Ames CP, on behalf of the International Spine Study Group (2017) Complication rates associated with 3-column osteotomy in 82 adult spinal deformity patients: retrospective review of a prospectively collected multicenter consecutive series with 2-year follow-up. J Neurosurg Spine 27(4):444–457.  https://doi.org/10.3171/2016.10.SPINE16849 CrossRefPubMedGoogle Scholar
  9. 9.
    Gupta S, Eksi MS, Ames CP, Deviren V, Durbin-Johnson B, Smith JS, Gupta MC (2017) A Novel 4-rod technique offers potential to reduce rod breakage and pseudarthrosis in pedicle subtraction osteotomies for adult spinal deformity correction. Oper Neurosurg (Hagerstown).  https://doi.org/10.1093/ons/opx151 Google Scholar
  10. 10.
    Luca A, Lovi A, Galbusera F, Brayda-Bruno M (2014) Revision surgery after PSO failure with rod breakage: a comparison of different techniques. Eur Spine J 23(6):610–615.  https://doi.org/10.1007/s00586-014-3555-9 CrossRefPubMedGoogle Scholar
  11. 11.
    Smith JS, Shaffrey E, Klineberg E, Shaffrey CI, Lafage V, Schwab FJ, Protopsaltis T, Scheer JK, Mundis GM, Fu KMG, Gupta MC, Hostin R, Deviren V, Kebaish K, Hart R, Burton DC, Line B, Bess S, Ames CP (2014) Prospective multicenter assessment of risk factors for rod fracture following surgery for adult spinal deformity. J Neurosurg Spine 21(6):994–1003.  https://doi.org/10.3171/2014.9.SPINE131176 CrossRefPubMedGoogle Scholar
  12. 12.
    Smith JS, Shaffrey CI, Ames CP, Demakakos J, Fu KMG, Keshavarzi S, Li CMY, Deviren V, Schwab FJ, Lafage V, Bess S (2012) Assessment of symptomatic rod fracture after posterior instrumented fusion for adult spinal deformity. Neurosurgery 71(4):862–867.  https://doi.org/10.1227/NEU.0b013e3182672aab CrossRefPubMedGoogle Scholar
  13. 13.
    Ottardi C, Galbusera F, Luca A, Prosdocimo L, Sasso M, Brayda-Bruno M, Villa T (2016) Finite element analysis of the lumbar destabilization following pedicle subtraction osteotomy. Med Eng Phys 38(5):506–509.  https://doi.org/10.1016/j.medengphy.2016.02.002 CrossRefPubMedGoogle Scholar
  14. 14.
    Berjano P, Bassani R, Casero G, Sinigaglia A, Cecchinato R, Lamartina C (2013) Failures and revisions in surgery for sagittal imbalance: analysis of factors influencing failure. Eur Spine J 22(6):S853–S858CrossRefPubMedGoogle Scholar
  15. 15.
    Hyun SJ, Rhim SC (2010) Clinical outcomes and complications after pedicle subtraction osteotomy for fixed sagittal imbalance patients: a long-term follow-up data. J Korean Neurosurg Soc 47(2):95–101.  https://doi.org/10.3340/jkns.2010.47.2.95 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hyun SJ, Lenke LG, Kim YC, Koester LA, Blanke KM (2015) Long-term radiographic outcomes of a central hook-rod construct for osteotomy closure: minimum 5-year follow-up. Spine (Phila Pa 1976) 40(7):E428–E432.  https://doi.org/10.1097/brs.0000000000000783 CrossRefGoogle Scholar
  17. 17.
    Watanabe K, Lenke LG, Daubs MD, Kim YW, Kim YB, Watanabe K, Stobbs G (2008) A central hook-rod construct for osteotomy closure: a technical note. Spine (Phila Pa 1976) 33(10):1149–1155.  https://doi.org/10.1097/brs.0b013e31816f5f23 CrossRefGoogle Scholar
  18. 18.
    ISSG, GuptaM Henry J, Lafage V, Schwab FJ, Ames CP et al (2015) Reducing rod breakage and nonunion in pedicle subtraction osteotomy: the importance of rod number and configuration in 264 patients with 2-years follow-up. Spine J 15:154S–155S.  https://doi.org/10.1016/j.spinee.2015.07.173 Google Scholar
  19. 19.
    Scheer JK, Tang JA, Deviren V, Buckley JM, Pekmezci M, McClellan RT, Ames CP (2011) Biomechanical analysis of revision strategies for rod fracture in pedicle subtraction osteotomy. Neurosurgery 69(1):164–172.  https://doi.org/10.1227/neu.0b013e31820f362a (discussion 172) CrossRefPubMedGoogle Scholar
  20. 20.
    Deviren V, Tang JA, Scheer JK, Buckley JM, Pekmezci M, McClellan RT, Ames CP (2012) Construct rigidity after fatigue loading in pedicle subtraction osteotomy with or without adjacent interbody structural cages. Glob Spine J 2(4):213–220CrossRefGoogle Scholar
  21. 21.
    Hallager DW, Gehrchen M, Dahl B, Harris JA, Gudipally M, Jenkins S, Wu AM, Bucklen BS (2016) Use of supplemental short pre-contoured accessory rods and cobalt chrome alloy posterior rods reduces primary rod strain and range of motion across the pedicle subtraction osteotomy level: an in vitro biomechanical study. Spine 41(7):E388–E395.  https://doi.org/10.1097/BRS.0000000000001282 CrossRefPubMedGoogle Scholar
  22. 22.
    Luca A, Ottardi C, Sasso M, Prosdocimo L, La Barbera L, Brayda-Bruno M, Galbusera F, Villa T (2017) Instrumentation failure following pedicle subtraction osteotomy: the role of rod material, diameter, and multi-rod constructs. Eur Spine J 26(3):764–770.  https://doi.org/10.1007/s00586-016-4859-8 CrossRefPubMedGoogle Scholar
  23. 23.
    Luca A, Ottardi C, Lovi A, Brayda-Bruno M, Villa T, Galbusera F (2017) Anterior support reduces the stresses on the posterior instrumentation after pedicle subtraction osteotomy: a finite-element study. Eur Spine J 26(Suppl 4):450–456.  https://doi.org/10.1007/s00586-017-5084-9 CrossRefPubMedGoogle Scholar
  24. 24.
    Wilke H-J, Claes L, Schmitt H, Wolf S (1994) A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J 3(2):91–97CrossRefPubMedGoogle Scholar
  25. 25.
    Wilke H-J, Jungkunz B, Wenger K, Claes LE (1998) Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular-deformation rate, and moisture condition. Anat Rec 251(1):15–19CrossRefPubMedGoogle Scholar
  26. 26.
    Wilke H-J, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7(2):148–154CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    La Barbera L, Villa T (2017) Toward the definition of a new worst-case paradigm for the preclinical evaluation of posterior spine stabilization devices. Proc Inst Mech Eng H 231(2):176–185.  https://doi.org/10.1177/0954411916684365 CrossRefPubMedGoogle Scholar
  28. 28.
    La Barbera L, Villa T (2016) ISO 12189 standard for the preclinical evaluation of posterior spinal stabilization devices—I: assembly procedure and validation. Proc Inst Mech Eng H 230(2):122–133.  https://doi.org/10.1177/0954411915621587 CrossRefPubMedGoogle Scholar
  29. 29.
    Dahl BT, Harris JA, Gudipally M, Moldavsky M, Khalil S, Bucklen BS (2017) Kinematic efficacy of supplemental anterior lumbar interbody fusion at lumbosacral levels in thoracolumbosacral deformity correction with and without pedicle subtraction osteotomy at L3: an in vitro cadaveric study. Eur Spine J 26(11):2773–2781.  https://doi.org/10.1007/s00586-017-5222-4 CrossRefPubMedGoogle Scholar
  30. 30.
    Lehman RA, Kang DG, Wagner SC, Paik H, Cardoso MJ, Bernstock JD, Dmitriev AE (2015) Biomechanical stability of transverse connectors in the setting of a thoracic pedicle subtraction osteotomy. Spine J 15:1629–1635.  https://doi.org/10.1016/j.spinee.2015.03.010 CrossRefPubMedGoogle Scholar
  31. 31.
    Berti F, La Barbera L, Piovesan A, Allegretti D, Ottardi C, Villa T, Pennati G (2018) Residual stresses in titanium spinal rods: effects of two contouring methods and material plastic properties. J Mech Behav Biomed Mater. Submitted on 10/01/2018Google Scholar
  32. 32.
    Tang JA, Leasure JM, Smith JS, Buckley JM, Kondrashov D, Ames CP (2013) Effect of severity of rod contour on posterior rod failure in the setting of lumbar pedicle subtraction osteotomy (PSO): a biomechanical study. Neurosurgery 72(2):276–282.  https://doi.org/10.1227/neu.0b013e31827ba066 (discussion 283) CrossRefPubMedGoogle Scholar
  33. 33.
    Lindsey C, Deviren V, Xu Z, Yeh RF, Puttlitz CM (2006) The effects of rod contouring on spinal construct fatigue strength. Spine (Phila Pa 1976) 1 31(15):1680–1687CrossRefGoogle Scholar
  34. 34.
    Ottardi C (2015) Ph.D. thesis. Politecnico di Milano, Dec 2015Google Scholar
  35. 35.
    Wilke HJ, Rohlmann A, Neller S, Schultheiss M, Bergmann G, Graichen F, Claes LE (2001) Is it possible to simulate physiologic loading conditions by applying pure moments? A comparison of in vivo and in vitro load components in an internal fixator. Spine (Phila Pa 1976) 15 26(6):636–642CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Biological Structure Mechanics, Department of ChemistryMaterials and Chemical Engineering “Giulio Natta”, Politecnico di MilanoMilanItaly
  2. 2.IRCCS Galeazzi Orthopaedic InstituteMilanItaly
  3. 3.Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre UlmUlm UniversityUlmGermany

Personalised recommendations