A preliminary study of 3.0-T magnetic resonance diffusion tensor imaging in cervical spondylotic myelopathy

  • Fulong Dong
  • Yuanyuan Wu
  • Peiwen Song
  • Yinfeng Qian
  • Ying Wang
  • Liyan Xu
  • Minmin Yin
  • Renjie Zhang
  • Hui Tao
  • Peng Ge
  • Chang Liu
  • Huaqing Zhang
  • Jinwen Zhu
  • Cailiang Shen
  • Yongqiang Yu
Original Article

Abstract

Purpose

To compare diffusion tensor imaging (DTI) parameters of the spinal cord between patients with cervical spondylotic myelopathy (CSM) and normal subjects, and investigate their significance in the clinical diagnosis, surgical planning and post-operative evaluation of CSM.

Methods

Routine sequence magnetic resonance imaging (MRI) and DTI scans were performed in 50 normal subjects and 60 cases of CSM with 3.0-T MR. DTI images, apparent diffusion coefficient (ADC) and fractional anisotropy (FA) colormaps corresponding to spinal cord cross-sections were obtained. The spinal cord function of CSM patients was measured using modified Japanese Orthopaedic Association (mJOA) scoring and Nurick grade at different times. The changes in DTI parameters and their correlation with spinal cord function scores were analysed by SPSS 19.

Results

There were significant differences in DTI parameters of the spinal cord between normal subjects and patients with CSM (ADC: 1.119 ± 0.087 vs. 1.395 ± 0.091, P < 0.01; FA: 0.661 ± 0.057 vs. 0.420 ± 0.080, P < 0.01). The FA values at the maximal compression level of the spinal cord in the patients with CSM were significantly associated with the mJOA score pre-operatively, 1 week, and 1, 3 and 6 months post-operatively, with Pearson’s correlation coefficients of 0.58 (P < 0.01), 0.53 (P < 0.05), and 0.51 (P < 0.05), 0.54 (P < 0.05) and 0.55 (P < 0.05), respectively. However, the FA values were significantly negatively associated with the Nurick grade, with Pearson’s correlation coefficients of − 0.40 (P < 0.05), − 0.39 (P < 0.05), and -0.41 (P < 0.05), − 0.45 (P < 0.05) and − 0.44 (P < 0.05), respectively.

Conclusions

DTI may play a significant role in diagnosing and predicting the development of CSM.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.

Keywords

Cervical spondylotic myelopathy Spinal cord Magnetic resonance imaging Diffusion tensor imaging Spinal cord function scores 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

586_2018_5579_MOESM1_ESM.pptx (709 kb)
Supplementary material 1 (PPTX 709 kb)

References

  1. 1.
    Baptiste DC, Fehlings MG (2006) Pathophysiology of cervical myelopathy. Spine J 6(6 Suppl):190S–197SCrossRefPubMedGoogle Scholar
  2. 2.
    Matsunaga S, Komiya S, Toyama Y (2015) Risk factors for development of myelopathy in patients with cervical spondylotic cord compression. Eur Spine J 24(Suppl 2):142–149CrossRefPubMedGoogle Scholar
  3. 3.
    Nouri A, Tetreault L, Singh A, Karadimas SK, Fehlings MG (2015) Degenerative cervical myelopathy: epidemiology, genetics, and pathogenesis. Spine (Phila Pa 1976) 40(12):E675–E693CrossRefGoogle Scholar
  4. 4.
    Shedid D, Benzel EC (2007) Cervical spondylosis anatomy: pathophysiology and biomechanics. Neurosurgery 60(1):S7–S13PubMedGoogle Scholar
  5. 5.
    Morishita Y, Naito M, Hymanson H, Miyazaki M, Wu G, Wang JC (2009) The relationship between the cervical spinal canal diameter and the pathological changes in the cervical spine. Eur Spine J 18(6):877–883CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Suk KS, Kim KT, Lee JH, Lee SH, Kim JS, Kim JY (2009) Reevaluation of the Pavlov ratio in patients with cervical myelopathy. Clin Orthop Surg 1(1):6–10CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Naganawa T, Miyamoto K, Ogura H, Suzuki N, Shimizu K (2011) Comparison of magnetic resonance imaging and computed tomogram-myelography for evaluation of cross sections of cervical spinal morphology. Spine (Phila Pa 1976) 36(1):50–56CrossRefGoogle Scholar
  8. 8.
    Dong F, Shen C, Jiang S, Zhang R, Song P, Yu Y, Wang S, Li X, Zhao G, Ding C (2013) Measurement of volume-occupying rate of cervical spinal canal and its role in cervical spondylotic myelopathy. Eur Spine J 22(5):1152–1157CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tetreault LA, Dettori JR, Wilson JR, Singh A, Nouri A, Fehlings MG, Brodt ED, Jacobs WB (2013) Systematic review of magnetic resonance imaging characteristics that affect treatment decision making and predict clinical outcome in patients with cervical spondylotic myelopathy. Spine (Phila Pa 1976) 38(22 Suppl 1):S89–110CrossRefGoogle Scholar
  10. 10.
    Mohanty C, Massicotte EM, Fehlings MG, Shamji MF (2015) Association of preoperative cervical spine alignment with spinal cord magnetic resonance imaging hyperintensity and myelopathy severity: analysis of a series of 124 cases. Spine (Phila Pa 1976) 40(1):11–16CrossRefGoogle Scholar
  11. 11.
    Liu Y, Kong C, Cui L, Yuan X, Zhao P, Zhang Y, Guan Y, Chen X (2017) Correlation between diffusion tensor imaging parameters and clinical assessments in patients with cervical spondylotic myelopathy with and without high signal intensity. Spinal Cord 55(9):1079–1083Google Scholar
  12. 12.
    Lindberg PG, Sanchez K, Ozcan F, Rannou F, Poiraudeau S, Feydy A, Maier MA (2016) Correlation of force control with regional spinal DTI in patients with cervical spondylosis without signs of spinal cord injury on conventional MRI. Eur Radiol 26(3):733–742CrossRefPubMedGoogle Scholar
  13. 13.
    Kara B, Celik A, Karadereler S, Ulusoy L, Ganiyusufoglu K, Onat L, Mutlu A, Ornek I, Sirvanci M, Hamzaoglu A (2011) The role of DTI in early detection of cervical spondylotic myelopathy: a preliminary study with 3-T MRI. Neuroradiology 53(8):609–616CrossRefPubMedGoogle Scholar
  14. 14.
    Bartels RH, Verbeek AL, Benzel EC, Fehlings MG, Guiot BH (2010) Validation of a translated version of the modified Japanese orthopaedic association score to assess outcomes in cervical spondylotic myelopathy: an approach to globalize outcomes assessment tools. Neurosurgery 66(5):1013–1016CrossRefPubMedGoogle Scholar
  15. 15.
    Revanappa KK, Rajshekhar V (2011) Comparison of Nurick grading system and modified Japanese Orthopaedic Association scoring system in evaluation of patients with cervical spondylotic myelopathy. Eur Spine J 20(9):1545–1551CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Yukawa Y, Kato F, Yoshihara H, Yanase M, Ito K (2007) MR T2 image classification in cervical compression myelopathy: predictor of surgical outcomes. Spine (Phila Pa 1976) 32(15):1675–1678CrossRefGoogle Scholar
  17. 17.
    Fernández de Rota JJ, Meschian S, Fernández de Rota A, Urbano V, Baron M (2007) Cervical spondylotic myelopathy due to chronic compression: the role of signal intensity changes in magnetic resonance images. J Neurosurg Spine 6(1):17–22CrossRefPubMedGoogle Scholar
  18. 18.
    Vedantam A, Jirjis MB, Schmit BD, Wang MC, Ulmer JL, Kurpad SN (2014) Diffusion tensor imaging of the spinal cord: insights from animal and human studies. Neurosurgery 74(1):1–8CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Xu J, Shimony JS, Klawiter EC, Snyder AZ, Trinkaus K, Naismith RT, Benzinger TL, Cross AH, Song SK (2013) Improved in vivo diffusion tensor imaging of human cervical spinal cord. Neuroimage 67:64–76CrossRefPubMedGoogle Scholar
  20. 20.
    Budzik JF, Balbi V, Le Thuc V, Duhamel A, Assaker R, Cotten A (2011) Diffusion tensor imaging and fibre tracking in cervical spondylotic myelopathy. Eur Radiol 21(2):426–433CrossRefPubMedGoogle Scholar
  21. 21.
    Facon D, Ozanne A, Fillard P, Lepeintre JF, Tournoux-Facon C, Ducreux D (2005) MR diffusion tensor imaging and fiber tracking in spinal cord compression. AJNR Am J Neuroradiol 26(6):1587–1594PubMedGoogle Scholar
  22. 22.
    Kelley BJ, Harel NY, Kim CY, Papademetris X, Coman D, Wang X, Hasan O, Kaufman A, Globinsky R, Staib LH, Cafferty WB, Hyder F, Strittmatter SM (2014) Diffusion tensor imaging as a predictor of locomotor function after experimental spinal cord injury and recovery. J Neurotrauma 31(15):1362–1373CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Song T, Chen WJ, Yang B, Zhao HP, Huang JW, Cai MJ, Dong TF, Li TS (2011) Diffusion tensor imaging in the cervical spinal cord. Eur Spine J 20(3):422–428CrossRefPubMedGoogle Scholar
  24. 24.
    Ellingson BM, Ulmer JL, Kurpad SN, Schmit BD (2008) Diffusion tensor MR imaging in chronic spinal cord injury. AJNR Am J Neuroradiol 29(10):1976–1982CrossRefPubMedGoogle Scholar
  25. 25.
    Jones JG, Cen SY, Lebel RM, Hsieh PC, Law M (2013) Diffusion tensor imaging correlates with the clinical assessment of disease severity in cervical spondylotic myelopathy and predicts outcome following surgery. AJNR Am J Neuroradiol 34(2):471–478CrossRefPubMedGoogle Scholar
  26. 26.
    Shin JJ, Jin BH, Kim KS, Cho YE, Cho WH (2010) Intramedullary high signal intensity and neurological status as prognostic factors in cervical spondylotic myelopathy. Acta Neurochir 152(10):1687–1694CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Fulong Dong
    • 1
    • 2
  • Yuanyuan Wu
    • 4
  • Peiwen Song
    • 1
    • 2
  • Yinfeng Qian
    • 3
  • Ying Wang
    • 3
  • Liyan Xu
    • 3
  • Minmin Yin
    • 3
  • Renjie Zhang
    • 1
    • 2
  • Hui Tao
    • 1
    • 2
  • Peng Ge
    • 1
    • 2
  • Chang Liu
    • 1
    • 2
  • Huaqing Zhang
    • 1
    • 2
  • Jinwen Zhu
    • 5
  • Cailiang Shen
    • 1
    • 2
  • Yongqiang Yu
    • 3
  1. 1.Department of OrthopedicsThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
  2. 2.Department of Spine SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
  3. 3.Department of RadiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
  4. 4.Department of Medical ImagingThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
  5. 5.Department of Spine Surgery, Honghui HospitalXi’an Jiaotong University Medical CenterXi’anChina

Personalised recommendations