European Spine Journal

, Volume 27, Issue 8, pp 1712–1723 | Cite as

The use of gait analysis in the assessment of patients afflicted with spinal disorders

  • Ram HaddasEmail author
  • Kevin L. Ju
  • Theodore Belanger
  • Isador H. Lieberman
Original Article



Use gait analysis to establish and detail the clinically relevant components of normal human gait, analyze the gait characteristics for those afflicted with spinal pathology, and identify those aspects of human gait that correlate with pre- and postoperative patient function and outcomes.


Twenty patients with adult degenerative scoliosis (ADS), 20 patients with cervical spondylotic myelopathy (CSM), and 15 healthy volunteers performed over-ground gait trials with a comfortable self-selected speed using video cameras to measure patient motion, surface electromyography (EMG) to record muscle activity, and force plates to record ground reaction force (GRF). Gait distance and temporal parameters, ankle, knee, hip, pelvic, and trunk range of motion (ROM), duration of lower extremity EMG activity and peak vertical GRF were measured.


Patients with ADS and CSM exhibited a significantly slower gait speed, decrease in step length, cadence, longer stride time, stance time, double support time, and an increase in step width compared to those in the control group. These patients also exhibited a significantly different ankle, knee, pelvic, and trunk ROM. Moreover, spinal disorder patients exhibited a significantly longer duration of rectus femoris, semitendinosus, tibialis anterior and medial gastrocnemius muscle activity along with an altered vertical GRF pattern.


Gait analysis provides an objective measure of functional gait in healthy controls as well as those with ADS and CSM. This study established and detailed some of the important kinematic and kinetic variables of gait in patients with spinal disorders. We recommend that spine care providers use gait analysis as part of their clinical evaluation to provide an objective measure of function.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.


Gait analysis Electromyography Ground reaction force Adult degenerative scoliosis Cervical spondylotic myelopathy 


Compliance with ethical standards

Conflict of interest

None of the authors has any potential conflict of interest.

IRB approval

The study was approved by the Western Institutional Review Board for the Protection of Human Subjects (IRB#: 20152881).

Supplementary material

586_2018_5569_MOESM1_ESM.pptx (271 kb)
Supplementary material 1 (PPTX 271 kb)


  1. 1.
    Winter DA (2009) Biomechanics and motor control of human movement. Wiley, HobokenCrossRefGoogle Scholar
  2. 2.
    Oatis CA (2004) Kinesiology—the mechanics and pathomechanics of human movement. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  3. 3.
    Kuo AD (2007) The six determinants of gait and the inverted pendulum analogy: a dynamic walking perspective. Hum Mov Sci 26:617–656. CrossRefPubMedGoogle Scholar
  4. 4.
    Kuo AD, Donelan JM (2010) Dynamic principles of gait and their clinical implications. Phys Ther 90:157–174. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kramers-de Quervain IA, Muller R, Stacoff A, Grob D, Stussi E (2004) Gait analysis in patients with idiopathic scoliosis. Eur Spine J 13:449–456. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yagi M, Ohne H, Konomi T, Fujiyoshi K, Kaneko S, Takemitsu M, Machida M, Yato Y, Asazuma T (2017) Walking balance and compensatory gait mechanisms in surgically treated patients with adult spinal deformity. Spine J 17:409–417. CrossRefPubMedGoogle Scholar
  7. 7.
    Baskwill AJ, Belli P, Kelleher L (2017) Evaluation of a gait assessment module using 3D motion capture technology. Int J Ther Massage Bodyw 10:3–9Google Scholar
  8. 8.
    Engsberg JRBK, Wagner JM, Uhrich ML, Blanke K, Lenke LG (2003) Gait changes as the result of deformity reconstruction surgery in a group of adults with lumbar scoliosis. Spine 28:1836–1843CrossRefPubMedGoogle Scholar
  9. 9.
    Malone A, Meldrum D, Bolger C (2012) Gait impairment in cervical spondylotic myelopathy: comparison with age- and gender-matched healthy controls. Eur Spine J 21:2456–2466CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Malone A, Meldrum D, Bolger C (2015) Three-dimensional gait analysis outcomes at 1 year following decompressive surgery for cervical spondylotic myelopathy. Eur Spine J 24:48–56CrossRefPubMedGoogle Scholar
  11. 11.
    Nishimura H, Endo K, Suzuki H, Tanaka H, Shishido T, Yamamoto K (2015) Gait analysis in cervical spondylotic myelopathy. Asian Spine J 9:321–326. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Haddas R, Belanger T (2017) Clinical gait analysis on a patient undergoing surgical correction of kyphosis from severe ankylosing spondylitis. Int J Spine Surg 11:138–144. CrossRefGoogle Scholar
  13. 13.
    Siasios ID, Spanos SL, Kanellopoulos AK, Fotiadou A, Pollina J, Schneider D, Becker A, Dimopoulos VG, Fountas KN (2017) The role of gait analysis in the evaluation of patients with cervical myelopathy: a literature review study. World Neurosurg 101:275–282. CrossRefPubMedGoogle Scholar
  14. 14.
    Shiba Y, Taneichi H, Inami S, Moridaira H, Takeuchi D, Nohara Y (2016) Dynamic global sagittal alignment evaluated by three-dimensional gait analysis in patients with degenerative lumbar kyphoscoliosis. Eur Spine J 25:2572–2579. CrossRefPubMedGoogle Scholar
  15. 15.
    DeLuca PA, Davis RB 3rd, Ounpuu S, Rose S, Sirkin R (1997) Alterations in surgical decision making in patients with cerebral palsy based on three-dimensional gait analysis. J Pediatr Orthop 17:608–614CrossRefPubMedGoogle Scholar
  16. 16.
    Ounpuu S, Davis R, DeLuca P (1996) Joint kinetics: methods, interpretation and treatment decision-making in children with cerebral palsy and myelomeningocele. Gait and Posture 4:62–78CrossRefGoogle Scholar
  17. 17.
    Õunpuu S, DeLuca PA, Davis RB (1997) The role of hip flexor and hamstring surgery on pelvic and hip motion in persons with cerebral palsy: an examination of the pre and post operative kinematics and kinetics. Gait and Posture 5:152CrossRefGoogle Scholar
  18. 18.
    Ounpuu S, Winter DA (1989) Bilateral electromyographical analysis of the lower limbs during walking in normal adults. Electroencephalogr Clin Neurophysiol 72:429–438CrossRefPubMedGoogle Scholar
  19. 19.
    Hollman JH, McDade EM, Petersen RC (2011) Normative spatiotemporal gait parameters in older adults. Gait Posture 34:111–118. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ko SU, Ling SM, Schreiber C, Nesbitt M, Ferrucci L (2011) Gait patterns during different walking conditions in older adults with and without knee osteoarthritis–results from the Baltimore longitudinal study of aging. Gait Posture 33:205–210. CrossRefPubMedGoogle Scholar
  21. 21.
    Chung CY, Park MS, Lee SH, Kong SJ, Lee KM (2010) Kinematic aspects of trunk motion and gender effect in normal adults. J Neuroeng Rehabil 7:9. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    McCormick JD, Werner BC, Shimer AL (2013) Patient-reported outcome measures in spine surgery. J Am Acad Orthop Surg 21:99–107. CrossRefPubMedGoogle Scholar
  23. 23.
    Johnston BC, Patrick DL, Busse JW, Schunemann HJ, Agarwal A, Guyatt GH (2013) Patient-reported outcomes in meta-analyses–Part 1: assessing risk of bias and combining outcomes. Health Qual Life Outcomes 11:109. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Diebo BG, Varghese JJ, Lafage R, Schwab FJ, Lafage V (2015) Sagittal alignment of the spine: what do you need to know? Clin Neurol Neurosurg 139:295–301CrossRefPubMedGoogle Scholar
  25. 25.
    Barrey C, Roussouly P, Le Huec JC, D’Acunzi G, Perrin G (2013) Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur Spine J 22(Suppl 6):S834–S841. CrossRefPubMedGoogle Scholar
  26. 26.
    Amabile C, Le Huec JC, Skalli W (2016) Invariance of head-pelvis alignment and compensatory mechanisms for asymptomatic adults older than 49 years. Eur Spine J. CrossRefPubMedGoogle Scholar
  27. 27.
    Cimolin V, Galli M, Grugni G, Vismara L, Albertini G, Rigoldi C, Capodaglio P (2010) Gait patterns in Prader–Willi and Down syndrome patients. J Neuroeng Rehabil 7:28. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sawacha Z, Cristoferi G, Guarneri G, Corazza S, Dona G, Denti P, Facchinetti A, Avogaro A, Cobelli C (2009) Characterizing multisegment foot kinematics during gait in diabetic foot patients. J Neuroeng Rehabil 6:37. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Renaud A, Fuentes A, Hagemeister N, Lavigne M, Vendittoli PA (2016) Clinical and biomechanical evaluations of staged bilateral total knee arthroplasty patients with two different implant designs. Open Orthop J 10:155–165. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Malone A, Meldrum D, Gleeson J, Bolger C (2013) Electromyographic characteristics of gait impairment in cervical spondylotic myelopathy. Eur Spine J 22:2538–2544. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sacco IC, Akashi PM, Hennig EM (2010) A comparison of lower limb EMG and ground reaction forces between barefoot and shod gait in participants with diabetic neuropathic and healthy controls. BMC Musculoskelet Disord 11:24. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bovonsunthonchai S, Khobkhun F, Vachalathiti R (2015) Ground reaction forces of the lead and trail limbs when stepping over an obstacle. Med Sci Monit 21:2041–2049. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Vaughan CL, Davis BL, O’Conner JC (1999) Dynamics of human gait. Kiboho Publishers, Cape TownGoogle Scholar
  34. 34.
    Robertson GE, Caldwell GE, Hamill J, Kamen G, Whittlesey SN (2013) Research methods in biomechanics. Human Kinetics, ChampaignGoogle Scholar
  35. 35.
    Malone A, Meldrum D, Gleeson J, Bolger C (2011) Reliability of surface electromyography timing parameters in gait in cervical spondylotic myelopathy. J Electromyogr Kinesiol 21:1004–1010. CrossRefPubMedGoogle Scholar
  36. 36.
    Ferrari A, Benedetti MG, Pavan E, Frigo C, Bettinelli D, Rabuffetti M, Crenna P, Leardini A (2008) Quantitative comparison of five current protocols in gait analysis. Gait Posture 28:207–216. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Texas Back InstitutePlanoUSA
  2. 2.Texas Back InstituteRockwallUSA

Personalised recommendations