Advertisement

European Spine Journal

, Volume 27, Issue 8, pp 1905–1910 | Cite as

Regarding loads after spinal fusion, every level should be seen separately: a musculoskeletal analysis

  • A. Benditz
  • S. Auer
  • J. F. Spörrer
  • S. Wolkerstorfer
  • J. Grifka
  • F. Suess
  • S. Dendorfer
Original Article

Abstract

Introduction

The number of spinal fusion surgeries is steadily increasing and biomechanical consequences are still in debate. The aim of this study is to provide biomechanical insights into the sagittal balance of the spine and to compare spinal load before and after spinal fusion.

Method

The joint reaction forces of 52 patients were analyzed in proximo-distal and antero-posterior direction from the levels T12–L1 to L5–S1 using musculoskeletal simulations.

Results

In 104 simulations, pre-surgical forces were equal to post-surgical. The levels L4–L5 and T12–L1, however, showed increased spinal forces compression forces with higher sagittal displacement. Improved restauration of sagittal balance was accompanied by lower spinal load. AP shear stress, interestingly decreased with sagittal imbalance.

Conclusion

Imbalanced spines have a risk of increased compression forces at Th12–L1. L4–L5 always has increased spinal loads.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.

Keywords

Sagittal balance Spinal fusion AnyBody Modeling System Spine biomechanics Musculoskeletal analysis 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

586_2018_5476_MOESM1_ESM.pptx (2.2 mb)
Supplementary material 1 (PPTX 2302 kb)

References

  1. 1.
    Schwab F, Lafage V, Patel A, Farcy J (2009) Sagittal plane considerations and the pelvis in the adult patient. Spine (Phila Pa 1976) 17:1828–1833CrossRefGoogle Scholar
  2. 2.
    Haddas R, Lieberman IH (2017) A method to quantify the “cone of economy”. Eur Spine J.  https://doi.org/10.1007/s00586-017-5321-2 PubMedCrossRefGoogle Scholar
  3. 3.
    Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine (Phila Pa 1976) 3:346–353CrossRefGoogle Scholar
  4. 4.
    Labelle H, Mac-Thiong J, Roussouly P (2011) Spino-pelvic sagittal balance of spondylolisthesis. Eur Spine J S5:641–646CrossRefGoogle Scholar
  5. 5.
    Hempfing A, Zenner J, Ferraris L, Meier O, Koller H (2011) Wiederherstellung der sagittalen balance bei der versorgung thorakaler und lumbaler wirbelkörperfrakturen. Orthopade 8:690–702CrossRefGoogle Scholar
  6. 6.
    Huec J, Roussouly P (2011) Sagittal spino-pelvic balance is a crucial analysis for normal and degenerative spine. Eur Spine J S5:556–557CrossRefGoogle Scholar
  7. 7.
    Le Huec JC, Faundez A, Dominguez D, Hoffmeyer P, Aunoble S (2015) Evidence showing the relationship between sagittal balance and clinical outcomes in surgical treatment of degenerative spinal diseases: a literature review. Int Orthop 1:87–95CrossRefGoogle Scholar
  8. 8.
    Le Huec JC, Hasegawa K (2016) Normative values for the spine shape parameters using 3D standing analysis from a database of 268 asymptomatic caucasian and japanese subjects. Eur Spine J 25(11):3630–3637CrossRefPubMedGoogle Scholar
  9. 9.
    Putzer M, Auer S, Malpica W, Suess F, Dendorfer S (2016) A numerical study to determine the effect of ligament stiffness on kinematics of the lumbar spine during flexion. BMC Musculoskelet Disord 17:95.  https://doi.org/10.1186/s12891-16-0942-x CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Putzer M, Ehrlich I, Rasmussen J, Gebbeken N, Dendorfer S (2016) Sensitivity of lumbar spine loading to anatomical parameters. J Biomech 6:953–958CrossRefGoogle Scholar
  11. 11.
    Wong KW, Luk KD, Leong JC, Wong SF, Wong KK (2006) Continuous dynamic spinal motion analysis. Spine (Phila Pa 1976) 4:414–419CrossRefGoogle Scholar
  12. 12.
    Pearcy MJ (1985) Stereo radiography of lumbar spine motion. Acta Orthop Scand Suppl 212:1–45CrossRefPubMedGoogle Scholar
  13. 13.
    Arshad R, Zander T, Dreischarf M, Schmidt H (2016) Influence of lumbar spine rhythms and intra-abdominal pressure on spinal loads and trunk muscle forces during upper body inclination. Med Eng Phys 4:333–338CrossRefGoogle Scholar
  14. 14.
    de Zee M, Hansen L, Wong C, Rasmussen J, Simonsen EB (2007) A generic detailed rigid-body lumbar spine model. J Biomech 6:1219–1227CrossRefGoogle Scholar
  15. 15.
    Lee RY, Wong TK (2002) Relationship between the movements of the lumbar spine and hip. Hum Mov Sci 4:481–494CrossRefGoogle Scholar
  16. 16.
    Barrey C, Jund J, Noseda O, Roussouly P (2007) Sagittal balance of the pelvis-spine complex and lumbar degenerative diseases. A comparative study about 85 cases. Eur Spine J 9:1459–1467CrossRefGoogle Scholar
  17. 17.
    Gottfried ON, Daubs MD, Patel AA, Dailey AT, Brodke DS (2009) Spinopelvic parameters in postfusion flatback deformity patients. Spine J 8:639–647CrossRefGoogle Scholar
  18. 18.
    Tribus CB, Belanger TA, Zdeblick TA (1999) The effect of operative position and short-segment fusion on maintenance of sagittal alignment of the lumbar spine. Spine (Phila Pa 1976) 1:58–61CrossRefGoogle Scholar
  19. 19.
    Lazennec JY, Ramaré S, Arafati N, Laudet CG, Gorin M, Roger B et al (2000) Sagittal alignment in lumbosacral fusion: relations between radiological parameters and pain. Eur Spine J 1:47–55CrossRefGoogle Scholar
  20. 20.
    Kumar MN, Baklanov A, Chopin D (2001) Correlation between sagittal plane changes and adjacent segment degeneration following lumbar spine fusion. Eur Spine J 4:314–319CrossRefGoogle Scholar
  21. 21.
    Wilke H, Neef P, Hinz B, Seidel H, Claes L (2001) Intradiscal pressure together with anthropometric data—a data set for the validation of models. Clin Biomech (Bristol, Avon) 16(Suppl 1):S111–S126CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of OrthopaedicsUniversity Medical Centre Regensburg, Asklepios Klinikum Bad AbbachBad AbbachGermany
  2. 2.Laboratory for BiomechanicsRegensburg Center of Biomedical EngineeringRegensburgGermany

Personalised recommendations