Which parameters are relevant in sagittal balance analysis of the cervical spine? A literature review

  • Fong Poh Ling
  • T. Chevillotte
  • A. leglise
  • W. Thompson
  • C. Bouthors
  • Jean-Charles Le Huec
Review
  • 35 Downloads

Abstract

Introduction

Cervical spine is part of the spine with the most mobility in the sagittal plane. It is important for surgeons to have reliable, simple and reproducible parameters to analyse the cervical.

Material and method

This study is a systematic review and a critique of current parameters to help improve the study of cervical spinal balance. We conducted a systematic search of PUBMED/MEDLINE for literature published since January 2014. Only studies written in English and containing abstracts were considered for inclusion. The search performed was: «C7 slope» OR «T1 slope» OR «C2C7 offset» OR «C2C7 lordosis» OR «cervical SVA (sagittal vertical axis)» OR «TIA (thoracic inlet angle)» (Lee et al., J Spinal Disord Tech 25(2):E41–E47, 2012) OR «SCA (spino-cranial angle)». Exclusion criteria were purely post-operative and cadaveric analysis, studies performed with CT scan or MRI, studies on adolescent idiopathic scoliosis, traumatology studies and no standing analysis of the cervical spine. Relevance was confirmed by investigators if cervical parameters was a major criteria of the study.

Results

138 articles were found by the electronic search. After complete evaluation 20 articles were selected. The large majority of papers used the same parameters C2_C7 lordosis, C2–C7 SVA, T1 slope or C7 slope and T1 slope/cervical lordosis mismatch. Janusz reported a new parameter using a retrospective cohort of patient with cervical radiculopathy: the TIA (thoracic inlet angle). Le Huec reported an other new parameter based on a prospective study of asymptomatic volunteer: the spino-cranial angle (SCA). This parameter is highly correlated with the C7 slope and the cervical lordosis. Other studies reported parameters that are more global balance analysis including the cervical spine than cervical spine balance itself.

Conclusion

The most important parameters to analyse the cervical sagittal balance according to the literature available today for good clinical outcomes are the following: C7 or T1 slope, average value 20°, must not be higher than 40°. cSVA must not be less than 40°C (mean value 20 mm). SCA (spine cranial angle) must stay in a norm (83° ± 9°). Future studies should focus on those three parameters to analyse and compare pre and post op data and to correlate the results with the quality of life improvement.

Keywords

Cervical spine Sagittal balance Spino-cranial angle C7 slope T1 slope Cervical SVA Cervical lordosis 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Vital JM, Senegas J (1986) Anatomical bases of the study of the constraints to which the cervical spine is subject in the sagittal plane. A study of the center of gravity of the head. Surg Radiol Anat 8(3):169–173CrossRefPubMedGoogle Scholar
  2. 2.
    Barrey C, Jund J, Noseda O, Roussouly P (2007) Sagittal balance of the pelvis-spine complex and lumbar degenerative diseases. A comparative study about 85 cases. Eur Spine J 16(9):1459–1467CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ames CP, Blondel B, Scheer JK, Schwab FJ, Le Huec JC, Massicotte EM et al (2013) Cervical radiographical alignment: comprehensive assessment techniques and potential importance in cervical myelopathy. Spine 38(22 Suppl 1):S149–S160CrossRefPubMedGoogle Scholar
  4. 4.
    Ames CP, Smith JS, Eastlack R, Blaskiewicz DJ, Shaffrey CI, Schwab F et al (2015) Reliability assessment of a novel cervical spine deformity classification system. J Neurosurg Spine 23(6):673–683CrossRefPubMedGoogle Scholar
  5. 5.
    Bess S, Protopsaltis TS, Lafage V, Lafage R, Ames CP, Errico T et al (2016) Clinical and radiographic evaluation of adult spinal deformity. Clin Spine Surg 29(1):6–16PubMedGoogle Scholar
  6. 6.
    Ajello M, Marengo N, Pilloni G, Penner F, Vercelli G, Pecoraro F et al (2017) Is it possible to evaluate the ideal cervical alignment for each patient needing surgery? An easy rule to determine the appropriate cervical lordosis in preoperative planning. World Neurosurg 97:471–478CrossRefPubMedGoogle Scholar
  7. 7.
    Chen Y, Luo J, Pan Z, Yu L, Pang L, Zhong J et al (2017) The change of cervical spine alignment along with aging in asymptomatic population: a preliminary analysis. Eur Spine J.  https://doi.org/10.1007/s00586-017-5209-1Google Scholar
  8. 8.
    Lamartina C, Berjano P (2014) Classification of sagittal imbalance based on spinal alignment and compensatory mechanisms. Eur Spine J 23(6):1177–1189CrossRefPubMedGoogle Scholar
  9. 9.
    Legarreta CA, Barrios C, Rositto GE, Reviriego JM, Maruenda JI, Escalada MN et al (2014) Cervical and thoracic sagittal misalignment after surgery for adolescent idiopathic scoliosis: a comparative study of all pedicle screws versus hybrid instrumentation. Spine 39(16):1330–1337CrossRefPubMedGoogle Scholar
  10. 10.
    Lee SH, Kim KT, Seo EM, Suk KS, Kwack YH, Son ES (2012) The influence of thoracic inlet alignment on the craniocervical sagittal balance in asymptomatic adults. J Spinal Disord Tech 25(2):E41–E47CrossRefPubMedGoogle Scholar
  11. 11.
    Le Huec JC, Demezon H, Aunoble S (2015) Sagittal parameters of global cervical balance using EOS imaging: normative values from a prospective cohort of asymptomatic volunteers. Eur Spine J 24(1):63–71CrossRefPubMedGoogle Scholar
  12. 12.
    Jalai CM, Passias PG, Lafage V, Smith JS, Lafage R, Poorman GW et al (2016) A comparative analysis of the prevalence and characteristics of cervical malalignment in adults presenting with thoracolumbar spine deformity based on variations in treatment approach over 2 years. Eur Spine J 25(8):2423–2432CrossRefPubMedGoogle Scholar
  13. 13.
    Yu M, Zhao WK, Li M, Wang SB, Sun Y, Jiang L et al (2015) Analysis of cervical and global spine alignment under Roussouly sagittal classification in Chinese cervical spondylotic patients and asymptomatic subjects. Eur Spine J 24(6):1265–1273CrossRefPubMedGoogle Scholar
  14. 14.
    Hey HW, Lau ET, Wong CG, Tan KA, Liu GK, Wong HK (2017) Cervical alignment variations in different postures and predictors of normal cervical kyphosis—a new understanding. Spine.  https://doi.org/10.1097/BRS.0000000000002160Google Scholar
  15. 15.
    Park SM, Song KS, Park SH, Kang H, Daniel Riew K (2015) Does whole-spine lateral radiograph with clavicle positioning reflect the correct cervical sagittal alignment? Eur Spine J 24(1):57–62CrossRefPubMedGoogle Scholar
  16. 16.
    Yagi M, Takeda K, Machida M, Asazuma T (2015) Discordance of gravity line and C7PL in patient with adult spinal deformity-factors affecting the occiput-trunk sagittal discordance. Spine J 15(2):213–221CrossRefPubMedGoogle Scholar
  17. 17.
    Iyer S, Nemani VM, Nguyen J, Elysee J, Burapachaisri A, Ames CP et al (2016) Impact of cervical sagittal alignment parameters on neck disability. Spine 41(5):371–377CrossRefPubMedGoogle Scholar
  18. 18.
    Oe S, Togawa D, Nakai K, Yamada T, Arima H, Banno T et al (2015) The influence of age and sex on cervical spinal alignment among volunteers aged over 50. Spine 40(19):1487–1494CrossRefPubMedGoogle Scholar
  19. 19.
    Janusz P, Tyrakowski M, Glowka P, Offoha R, Siemionow K (2015) Influence of cervical spine position on the radiographic parameters of the thoracic inlet alignment. Eur Spine J 24(12):2880–2884CrossRefPubMedGoogle Scholar
  20. 20.
    Protopsaltis TS, Lafage R, Vira S, Sciubba D, Soroceanu A, Hamilton K et al (2017) Novel angular measures of cervical deformity account for upper cervical compensation and sagittal alignment. Clin Spine Surg 30(7):E959–E967PubMedGoogle Scholar
  21. 21.
    Diebo BG, Challier V, Henry JK, Oren JH, Spiegel MA, Vira S et al (2016) Predicting cervical alignment required to maintain horizontal gaze based on global spinal alignment. Spine. 41(23):1795–1800CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Oe S, Yamato Y, Togawa D, Kurosu K, Mihara Y, Banno T et al (2016) Preoperative T1 slope more than 40 degrees as a risk factor of correction loss in patients with adult spinal deformity. Spine 41(19):E1168–E1176CrossRefPubMedGoogle Scholar
  23. 23.
    Smith JS, Lafage V, Schwab FJ, Shaffrey CI, Protopsaltis T, Klineberg E et al (2014) Prevalence and type of cervical deformity among 470 adults with thoracolumbar deformity. Spine 39(17):E1001–E1009CrossRefPubMedGoogle Scholar
  24. 24.
    Hashimoto K, Miyamoto H, Ikeda T, Akagi M (2017) Radiologic features of dropped head syndrome in the overall sagittal alignment of the spine. Eur Spine J.  https://doi.org/10.1007/s00586-017-5186-4Google Scholar
  25. 25.
    Lee JS, Youn MS, Shin JK, Goh TS, Kang SS (2015) Relationship between cervical sagittal alignment and quality of life in ankylosing spondylitis. Eur Spine J 24(6):1199–1203CrossRefPubMedGoogle Scholar
  26. 26.
    Bao H, Lafage R, Liabaud B, Elysee J, Diebo BG, Poorman G et al (2017) Three types of sagittal alignment regarding compensation in asymptomatic adults: the contribution of the spine and lower limbs. Eur Spine J.  https://doi.org/10.1007/s00586-017-5159-7Google Scholar
  27. 27.
    Iyer S, Lenke LG, Nemani VM, Fu M, Shifflett GD, Albert TJ et al (2016) Variations in occipitocervical and cervicothoracic alignment parameters based on age: a prospective study of asymptomatic volunteers using full-body radiographs. Spine 41(23):1837–1844CrossRefPubMedGoogle Scholar
  28. 28.
    Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine 30(3):346–353CrossRefPubMedGoogle Scholar
  29. 29.
    Lafage V, Schwab F, Skalli W, Hawkinson N, Gagey PM, Ondra S et al (2008) Standing balance and sagittal plane spinal deformity: analysis of spinopelvic and gravity line parameters. Spine 33(14):1572–1578CrossRefPubMedGoogle Scholar
  30. 30.
    Le Huec JC, Aunoble S, Philippe L, Nicolas P (2011) Pelvic parameters: origin and significance. Eur Spine J 20(Suppl 5):564–571CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tang JA, Scheer JK, Smith JS, Deviren V, Bess S, Hart RA et al (2015) The impact of standing regional cervical sagittal alignment on outcomes in posterior cervical fusion surgery. Neurosurgery 76(Suppl 1):S14–S21 (discussion)CrossRefPubMedGoogle Scholar
  32. 32.
    Tamai K, Buser Z, Paholpak P, Seesumpun K, Nakamura H, Wang JC (2017) Can C7 slope substitute the T1 slope? An analysis using cervical radiographs and kinematic MRIs. Spine (Phila Pa 1976).  https://doi.org/10.1097/BRS.0000000000002371Google Scholar
  33. 33.
    Amabile C, Le Huec JC, Skalli W (2016) Invariance of head-pelvis alignment and compensatory mechanisms for asymptomatic adults older than 49 years. Eur Spine J 25:3630–3637CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Fong Poh Ling
    • 1
  • T. Chevillotte
    • 1
  • A. leglise
    • 1
  • W. Thompson
    • 1
  • C. Bouthors
    • 1
  • Jean-Charles Le Huec
    • 2
  1. 1.Bordeaux University HospitalBordeauxFrance
  2. 2.Dir Surg Research Lab, Orthospine DepartmentBordeaux University HospitalBordeauxFrance

Personalised recommendations