European Spine Journal

, Volume 27, Issue 3, pp 670–677 | Cite as

Xipho-pubic angle (XPA) correlates with patient’s reported outcomes in a population of adult spinal deformity: results from a multi-center cohort study

  • Francesco Langella
  • Jorge Hugo Villafañe
  • Virginie Lafage
  • Justin S. Smith
  • Christopher Shaffrey
  • Han Jo Kim
  • Douglas Burton
  • Richard Hostin
  • Shay Bess
  • Christopher Ames
  • Gregory Mundis
  • Eric Klineberg
  • Frank Schwab
  • Renault Lafage
  • Pedro Berjano
Original Article


Study design

Retrospective multi-center cohort study.


Sagittal misalignment causes changes in the abdominal shape. Xipho-pubic angle (XPA) has been previously described to radiographically evaluate the shape of the abdominal cavity in patients with spine deformity. The aims of this study are to evaluate the correlation of XPA-to-spinopelvic sagittal parameters and to patients’ health-related quality-of-life (HRQoL) scores.


278 patients from a multi-center database with diagnosis adult spinal deformity (ASD) (one or more of: coronal Cobb angle > 20°, sagittal vertical axis (SVA) > 50 mm, pelvic tilt (PT) > 25°, and thoracic kyphosis > 60°) were included. Cut-off values for moderate and severe disability (ODI—Oswestry Disability Index—20 and 40%) were calculated. Pearson’s correlation was tested between XPA and spinopelvic parameters and between XPA and HRQoL scores.


The cut-off value of XPA to identify ODI severe disability (40/100) was identified with XPA smaller than 103°; minimal (20/100) disability was identified by XPA greater than 113°. XPA showed strong correlation to sagittal spinopelvic parameters—PT, SVA, lumbar lordosis (LL), pelvic incidence (PI) minus LL—and to HRQoL scores—ODI, SF-36 PCS and SRS-22 activity and pain. XPA was the parameter with the strongest correlation to HRQoL scores.


Xipho-pubic angle reflects changes in spinal changes and has strong correlation to HRQoL and spinopelvic parameters. It can discriminate between patients with minimal, moderate, and severe disability as measured by ODI scores.

Graphical Abstract

These slides can be retrieved under Electronic Supplementary Material.


Abdomen Health-related quality of life Outcomes Sagittal alignment Spinal deformity 


Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

586_2017_5460_MOESM1_ESM.pptx (657 kb)
Supplementary material 1 (PPTX 657 kb)


  1. 1.
    Dubousset J (1994) Three-dimensional analysis of the scoliotic deformity. Pediatr Spine 1994:479–496Google Scholar
  2. 2.
    Bess S, Line B, Fu KM et al (2016) The health impact of symptomatic adult spinal deformity: comparison of deformity types to United States population norms and chronic diseases. Spine (Phila Pa 1976) 41:224–233. CrossRefGoogle Scholar
  3. 3.
    Schwab F, Dubey A, Gamez L et al (2005) Adult scoliosis: prevalence, SF-36, and nutritional parameters in an elderly volunteer population. Spine (Phila Pa 1976) 30:1082–1085. CrossRefGoogle Scholar
  4. 4.
    Schwab F, Ungar B, Blondel B et al (2012) Scoliosis Research Society-Schwab adult spinal deformity classification: a validation study. Spine (Phila Pa 1976) 37:1077–1082. CrossRefGoogle Scholar
  5. 5.
    Lafage V, Schwab F, Patel A et al (2009) Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine (Phila Pa 1976) 34:E599–E606. CrossRefGoogle Scholar
  6. 6.
    Garbossa D, Pejrona M, Damilano M et al (2014) Pelvic parameters and global spine balance for spine degenerative disease: The importance of containing for the well being of content. Eur Spine J 23:S616–S627. CrossRefGoogle Scholar
  7. 7.
    Lamartina C, Berjano P (2014) Classification of sagittal imbalance based on spinal alignment and compensatory mechanisms. Eur Spine J 23:1177–1189. CrossRefPubMedGoogle Scholar
  8. 8.
    Berjano P, Langella F, Damilano M et al (2015) Fusion rate following extreme lateral lumbar interbody fusion. Eur Spine J 24(Suppl 3):369–371. CrossRefPubMedGoogle Scholar
  9. 9.
    Kim KT, Suk KS, Cho YJ et al (2002) Clinical outcome results of pedicle subtraction osteotomy in ankylosing spondylitis with kyphotic deformity. Spine (Phila Pa 1976) 27:612–618. CrossRefGoogle Scholar
  10. 10.
    Diebo BG, Henry J, Lafage V, Berjano P (2015) Sagittal deformities of the spine: factors influencing the outcomes and complications. Eur Spine J 24(Suppl 1):3–15. CrossRefGoogle Scholar
  11. 11.
    Liu C, Zheng G, Zhang Y et al (2015) The radiologic, clinical results and digestive function improvement in patients with ankylosing spondylitis kyphosis after pedicle subtraction osteotomy. Spine J 15:1988–1993. CrossRefPubMedGoogle Scholar
  12. 12.
    Langella F, Villafañe JH, Ismael M et al (2015) Reliability of the xipho-pubic angle in patients with sagittal imbalance of the spine. J Neurosurg Sci (Epub ahead of print)Google Scholar
  13. 13.
    Grevitt M, Khazim R, Webb J et al (1997) The short form-36 health survey questionnaire in spine surgery. J Bone Joint Surg Br 79:48–52. CrossRefPubMedGoogle Scholar
  14. 14.
    Fairbank JC, Pynsent PB (2000) The Oswestry Disability Index. Spine (Phila Pa 1976) 25:2940–2952. (discussion 2952) CrossRefGoogle Scholar
  15. 15.
    Bridwell KH, Berven S, Glassman SD et al (2007) Is the SRS-22 instrument responsive to change in adult scoliosis patients having primary spinal deformity surgery? Spine (Phila Pa 1976) 32:2220–2225. CrossRefGoogle Scholar
  16. 16.
    Rillardon L, Levassor N, Guigui P et al (2003) Validation of a tool to measure pelvic and spinal parameters of sagittal balance. Rev Chir orthop{é}dique r{é}paratrice l’appareil Mot 89:218–227Google Scholar
  17. 17.
    Benoist M (2003) Natural history of the aging spine. Eur Spine J 12:86–90. CrossRefGoogle Scholar
  18. 18.
    Glassman SD, Bridwell K, Dimar JR et al (2005) The impact of positive sagittal balance in adult spinal deformity. Spine (Phila Pa 1976) 30:2024–2029. CrossRefGoogle Scholar
  19. 19.
    Lafage R, Schwab F, Challier V et al (2016) Defining Spino-Pelvic Alignment Thresholds. Spine (Phila Pa 1976) 41:62–68. CrossRefGoogle Scholar
  20. 20.
    Berjano P, Langella F, Ismael M-F et al (2014) Successful correction of sagittal imbalance can be calculated on the basis of pelvic incidence and age. Eur Spine J 23(Suppl 6):587–596. CrossRefPubMedGoogle Scholar
  21. 21.
    Protopsaltis TS, Schwab FJ, Bronsard N et al (2014) The t1 pelvic angle, a novel radiographic measure of global sagittal deformity, accounts for both spinal inclination and pelvic tilt and correlates with health-related quality of life. J Bone Joint Surg Am 96:1631–1640. CrossRefPubMedGoogle Scholar
  22. 22.
    Smith JS, Klineberg E, Schwab F et al (2013) Change in classification grade by the SRS-Schwab adult spinal deformity classification predicts impact on health-related quality of life measures. Spine (Phila Pa 1976) 38:1663–1671. CrossRefGoogle Scholar
  23. 23.
    Ji ML, Qian BP, Qiu Y et al (2015) Change in abdominal morphology after surgical correction of thoracolumbar kyphosis secondary to ankylosing spondylitis: a computed tomographic study. Spine (Phila Pa 1976) 40:E1244–E1249. CrossRefGoogle Scholar
  24. 24.
    Ji M, Qian B, Qiu Y et al (2013) Change of aortic length after closing-opening wedge osteotomy for patients with ankylosing spondylitis with thoracolumbar kyphosis. Spine (Phila Pa 1976) 38:E1361–E1367. CrossRefGoogle Scholar
  25. 25.
    Krishnakumar R, Lenke LG (2015) “Sternum-Into-Abdomen” deformity with abdominal compression following osteoporotic vertebral compression fractures managed By 2-level vertebral column resection and reconstruction. Spine (Phila Pa 1976) 40:E1035–E1039. CrossRefGoogle Scholar
  26. 26.
    Ryan DJ, Protopsaltis TS, Ames CP et al (2014) T1 pelvic angle (TPA) effectively evaluates sagittal deformity and assesses radiographical surgical outcomes longitudinally. Spine (Phila Pa 1976) 39:1203–1210. CrossRefGoogle Scholar
  27. 27.
    Johnston CE, Richards BS, Sucato DJ et al (2011) Correlation of preoperative deformity magnitude and pulmonary function tests in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 36:1096–1102. CrossRefGoogle Scholar
  28. 28.
    Bongiovanni R, Spradley MK (2012) Estimating sex of the human skeleton based on metrics of the sternum. Forensic Sci Int 219:290-e1. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Francesco Langella
    • 1
  • Jorge Hugo Villafañe
    • 2
  • Virginie Lafage
    • 3
  • Justin S. Smith
    • 4
  • Christopher Shaffrey
    • 4
  • Han Jo Kim
    • 5
  • Douglas Burton
    • 6
  • Richard Hostin
    • 7
  • Shay Bess
    • 8
  • Christopher Ames
    • 9
  • Gregory Mundis
    • 10
  • Eric Klineberg
    • 11
  • Frank Schwab
    • 3
  • Renault Lafage
    • 5
  • Pedro Berjano
    • 1
  1. 1.IRCCS Istituto Ortopedico GaleazziMilanItaly
  2. 2.IRCCS Fondazione Don Carlo GnocchiMilanItaly
  3. 3.Department of Orthopaedic SurgeryNYU Hospital for Joint DiseasesNew YorkUSA
  4. 4.Department of NeurosurgeryUniversity of Virginia School of MedicineCharlottesvilleUSA
  5. 5.Department of Orthopedic SurgeryHospital for Special SurgeryNew YorkUSA
  6. 6.Department of Orthopedic Surgery, University of Kansas School of Medicine3901 Rainbow BoulevardKansas CityUSA
  7. 7.Baylor Scoliosis CenterPlanoUSA
  8. 8.Rocky Mountain Hospital for Children, Presbyterian/St Luke’s Medical CenterDenverUSA
  9. 9.Department of NeurosurgeryUniversity of California San FranciscoSan FranciscoUSA
  10. 10.San Diego Center for Spinal DisordersLa JollaUSA
  11. 11.Department of Orthopedic SurgeryUniversity of California DavisSacramentoUSA

Personalised recommendations