Pressure-induced end-plate fracture in the porcine spine: Is the annulus fibrosus susceptible to damage?

  • Chelsea R. Snow
  • Maxine Harvey-Burgess
  • Brigitte Laird
  • Stephen H. M. Brown
  • Diane E. Gregory
Original Article
  • 56 Downloads

Abstract

Purpose

To determine if the mechanical properties of the annulus fibrosus (AF) are altered following end-plate fracture. Vertebral fractures, particularly those in the growth plate, are relatively common among adolescents. What is unclear is whether or not these fractures are also associated with concomitant damage to the intervertebral disc (IVD), in particular the AF.

Methods

The current study employed a high-rate IVD pressurization model to create growth plate fractures in the porcine cervical spine. Posterior AF mechanical properties and laminate adhesion strength were quantified in fractured spines and compared to samples obtained from non-pressurized, un-fractured spines.

Results

AF laminate adhesion strength was 31% lower in the fractured spines compared to the un-fractured spines.

Conclusion

This decrease in laminate adhesion strength suggests that growth plate fracture damage is not isolated to the vertebra and results in microdamage to the interlamellar matrix of the AF. This may increase in the risk of progressive delamination of the AF, which is associated with IVD herniation.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.

Keywords

Pressure End-plate Injury Intervertebral disc Delamination Apophyseal ring fracture 

Notes

Compliance with ethical standards

Conflict of interest

The author(s) declare that they have no competing interests.

Ethical and informed consent

Animal tissue was obtained from an abattoir and therefore ethical and informed consent is not necessary.

Funding

Funding was provided by Natural Sciences and Engineering Research Council of Canada.

Supplementary material

586_2017_5428_MOESM1_ESM.pptx (891 kb)
ESM1 (PPTX 892 kb)

References

  1. 1.
    Sucato DJ (2004) Back pain in children and adolescents. In: Frymoyer JW, Wiesel SW (eds) The adult and pediatric spine, vol 1, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 445–461Google Scholar
  2. 2.
    Molina V, Court C, Dagher G, Pourjamasb B, Nordin JY (2004) Fracture of the posterior margin of the lumbar spine: case report after an acute, unique, and severe trauma. Spine 29:E565–E567CrossRefPubMedGoogle Scholar
  3. 3.
    Clark P, Letts M (2001) Trauma to the thoracic and lumbar spine in the adolescent. Can J Surg 44(5):337–345PubMedPubMedCentralGoogle Scholar
  4. 4.
    Ikata T, Morita T, Katoh S, Tachibana K, Maoka H (1995) Lesions of the lumbar posterior end plate in children and adolescents. An MRI study. J Bone Jt Surg Br 77(6):951–955Google Scholar
  5. 5.
    Epstein NE, Epstein JA (1991) Limbus lumbar vertebral fractures in 27 adolescents and adults. Spine 16:962–966CrossRefPubMedGoogle Scholar
  6. 6.
    Takata K, Inoue S, Takahashi K, Ohtsuka Y (1988) Fracture of the posterior margin of a lumbar vertebral body. J Bone Jt Surg Am 70(4):589–594CrossRefGoogle Scholar
  7. 7.
    Aufdermaur M (1974) Spinal injuries in juveniles: necropsy findings in twelve cases. J Bone Jt Surg Br 56B(3):513–519Google Scholar
  8. 8.
    Sairyo K, Goel VK, Grobler LJ, Ikata T, Katoh S (1998) The pathomechanism of isthmic lumbar spondylolisthesis. A biomechanical study in immature calf spines. Spine 23:1442–1446CrossRefPubMedGoogle Scholar
  9. 9.
    Kajiura K, Katoh S, Sairyo K, Ikata T, Goel VK, Murakami RI (2001) Slippage mechanism of pediatric spondylolysis: biomechanical study using immature calf spines. Spine 26:2208–2212CrossRefPubMedGoogle Scholar
  10. 10.
    Bick EM, Copel JW (1951) The ring apophysis of the human vertebra; contribution to human osteogeny II. J Bone Jt Surg Am 33-A(3):783–787CrossRefGoogle Scholar
  11. 11.
    Brown SH, Gregory DE, McGill SM (2008) Vertebral end-plate fractures as a result of high rate pressure loading in the nucleus of the young adult porcine spine. J Biomech 41(1):122–127CrossRefPubMedGoogle Scholar
  12. 12.
    Lundin O, Ekström L, Hellström M, Holm S, Swärd L (2000) Exposure of the porcine spine to mechanical compression: differences in injury pattern between adolescents and adults. Eur Spine J 9(6):466–471CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Veres SP, Robertson PA, Broom ND (2008) Microstructure and mechanical disruption of the lumbar disc annulus. Part II: how the annulus fails under hydrostatic pressure. Spine 33(25):2711–2720CrossRefPubMedGoogle Scholar
  14. 14.
    Acosta FL Jr, Metz L, Adkisson HD, Liu J, Carruthers-Liebenberg E, Milliman C, Maloney M, Lotz JC (2011) Porcine intervertebral disc repair using allogeneic juvenile articular chondrocytes or mesenchymal stem cells. Tissue Eng Part A 17(23–24):3045–3055CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wade KR, Robertson PA, Broom ND (2011) A fresh look at the nucleus-endplate region: new evidence for significant structural integration. Eur Spine J 20(8):1225–1232CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Brown S, Rodrigues S, Sharp C, Wade K, Broom N, McCall IW, Roberts S (2016) Staying connected: structural integration at the intervertebral disc–vertebra interface of human lumbar spines. Eur Spine J 26(1):248–258CrossRefPubMedGoogle Scholar
  17. 17.
    Monaco LA, DeWitte-Orr SJ, Gregory DE (2016) A comparison between porcine, ovine, and bovine intervertebral disc anatomy and single lamella annulus fibrosus tensile properties. J Morphol 277(2):244–251CrossRefPubMedGoogle Scholar
  18. 18.
    Bezci SE, Nandy A, O’Connell GD (2015) Effect of hydration on healthy intervertebral disk mechanical stiffness. J Biomech Eng 137(10):101007CrossRefPubMedGoogle Scholar
  19. 19.
    McNally DS, Adams MA (1992) Internal intervertebral disc mechanics as revealed by stress profilometry. Spine 17(1):66–73CrossRefPubMedGoogle Scholar
  20. 20.
    Wade KR, Robertson PA, Thambyah A, Broom ND (2014) How healthy discs herniate: a biomechanical and microstructural study investigating the combined effects of compression rate and flexion. Spine 39(13):1018–1028CrossRefPubMedGoogle Scholar
  21. 21.
    Veres SP, Lee JM (2012) Designed to fail: a novel mode of collagen fibril disruption and its relevance to tissue toughness. Biophys J 102(12):76–2884CrossRefGoogle Scholar
  22. 22.
    Wilke HJ, Kienle A, Maile S, Rasche V, Berger-Roscher N (2016) A new dynamic six degrees of freedom disc-loading simulator allows to provoke disc damage and herniation. Eur Spine J 25(5):1363–1372CrossRefPubMedGoogle Scholar
  23. 23.
    Berger-Roscher N, Casaroli G, Rasche V, Villa T, Galbusera F, Wilke HJ (2017) Influence of complex loading conditions on intervertebral disc failure. Spine 42(2):E78–E85CrossRefPubMedGoogle Scholar
  24. 24.
    Pezowicz CA, Schechtman H, Robertson PA, Broom ND (2006) Mechanisms of anular failure resulting from excessive intradiscal pressure: a microstructural–micromechanical investigation. Spine 31(25):2891–2903CrossRefPubMedGoogle Scholar
  25. 25.
    Baranto A, Ekström L, Holm S, Hellström M, Hansson HA, Swärd L (2005) Vertebral fractures and separations of endplates after traumatic loading of adolescent porcine spines with experimentally-induced disc degeneration. Clin Biomech 20(10):1046–1054CrossRefGoogle Scholar
  26. 26.
    Thoreson O, Baranto A, Ekström L, Holm S, Hellström M, Swärd L (2010) The immediate effect of repeated loading on the compressive strength of young porcine lumbar spine. Knee Surg Sports Traumatol Arthrosc 18(5):694–701CrossRefPubMedGoogle Scholar
  27. 27.
    Gregory DE, Callaghan JP (2011) A comparison of uniaxial and biaxial mechanical properties of the annulus fibrosus: a porcine model. J Biomech Eng 133(2):024503CrossRefPubMedGoogle Scholar
  28. 28.
    Gregory DE, Bae WC, Sah RL, Masuda K (2014) Disc degeneration reduces the delamination strength of the annulus fibrosus in the rabbit annular disc puncture model. Spine J 14(7):1265–1271CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chang CH, Lee ZL, Chen WJ, Tan CF, Chen LH (2008) Clinical significance of ring apophysis fracture in adolescent lumbar disc herniation. Spine 33(16):1750–1754CrossRefPubMedGoogle Scholar
  30. 30.
    Singhal A, Mitra A, Cochrane D, Steinbok P (2013) Ring apophysis fracture in pediatric lumbar disc herniation: a common entity. Pediatr Neurosurg 49(1):16–20CrossRefPubMedGoogle Scholar
  31. 31.
    Maxfield BA (2010) Sports-related injury of the pediatric spine. Radiol Clin N Am 48(6):1237–1248CrossRefPubMedGoogle Scholar
  32. 32.
    Choi W, Song S, Chae S, Ko S (2017) Comparison of the extent of degeneration among the normal disc, immobilized disc, and immobilized disc with an endplate fracture. Clin Orthop Surg 9(2):193–199CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Balkovec C, Adams MA, Dolan P, McGill SM (2015) Annulus fibrosus can strip hyaline cartilage end plate from subchondral bone: a study of the intervertebral disk in tension. Glob Spine J 5(5):360–365CrossRefGoogle Scholar
  34. 34.
    Zehra U, Bow C, Lotz JC, Williams FMK, Rajasekaran S, Karppinen J, Luk KDK, Battiê MC, Samartzis D (2017) Structural vertebral endplate nomenclature and etiology: a study by the ISSLS Spinal Phenotype Focus Group. Eur Spine J.  https://doi.org/10.1007/s00586-017-5292-3 Google Scholar
  35. 35.
    Oxland TR, Panjabi MM, Southern EP, Duranceau JS (1991) An anatomic basis for spinal instability: a porcine trauma model. J Orthop Res 9:452–462CrossRefPubMedGoogle Scholar
  36. 36.
    Yingling VR, Callaghan JP, McGill SM (1999) The porcine cervical spine as a model of the human lumbar spine: an anatomical, geometric, and functional comparison. J Spinal Disord 12(5):415–423CrossRefPubMedGoogle Scholar
  37. 37.
    Wilke HJ, Geppert J, Kienle A (2011) Biomechanical in vitro evaluation of the complete porcine spine in comparison with data of the human spine. Eur Spine J 20(11):1859–1868CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Peh WC, Griffith JF, Yip DK, Leong JC (1998) Magnetic resonance imaging of lumbar vertebral apophyseal ring fractures. Australas Radiol 42(1):34–37CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Health SciencesWilfrid Laurier UniversityWaterlooCanada
  2. 2.Department of Kinesiology and Physical EducationWilfrid Laurier UniversityWaterlooCanada
  3. 3.Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphCanada

Personalised recommendations