Advertisement

European Spine Journal

, Volume 27, Supplement 3, pp 298–302 | Cite as

Corrosion of Harrington rod in idiopathic scoliosis: long-term effects

  • Beth Sherman
  • Tanya Crowell
Case Report

Abstract

Purpose

Metal implants have been used to treat adolescent idiopathic scoliosis since the 1960s. Only recently, however, it has the issue of metal-bone breakdown secondary to metal corrosion in situ come to light, raising concerns of possible long-term complications from the resulting metallosis and inflammation of spinal tissues. We present a case of a patient with neurological deficit, pain, and disability with Harrington rod in place for over 30 years, to bring attention to the issue of bio-corrosion of metal implants and its effect on human tissue. We call attention to the need for protocols to better diagnose and treat these patients.

Methods

We provide a complete review of the history and clinical manifestations as well as serum metal, X-ray, and CT/myelogram test results.

Results

A 52-year-old female with spinal fusion and Harrington rod presents with pain, lymphedema, disability, and neurological deficits including thoracic outlet syndrome, hyperreflexia, peripheral muscle weakness and atrophy, hypertonicity, Raynaud’s phenomenon, and balance and gait abnormalities. Serum chromium levels were elevated (26.73 nmol). X-rays showed no evidence of rod breakdown. Serial X-rays can demonstrate subtle corrosive changes but were not available. Adhesive arachnoiditis was diagnosed via CT/myelogram.

Conclusion

We hypothesize that bio-corrosion is present in this case and that it is associated with intraspinal metallosis. Trauma secondary to a motor vehicle accident, as well as arachnoiditis, and their possible effects on this case are outlined. Challenges in proper diagnosis and management are discussed.

Keywords

Scoliosis Spinal implants Corrosion Metal ions Metallosis 

Notes

Acknowledgements

The author thanks Ashlee-Ann E. Pigford, M.Sc., who was very helpful in guiding me through the process of writing.

Compliance with ethical standards

Conflict of interest

None of the authors has any potential conflict of interest.

References

  1. 1.
    Akazawa T, Minami S, Takahashi K, Kotani T, Hanawa T, Moriya H (2005) Corrosion of spinal implants retrieved from patients with scoliosis. J Orthop Sci 10:200–205CrossRefPubMedGoogle Scholar
  2. 2.
    Aulisa L, di Benedetto A, Vinciguerra A, Lorini G, Tranquilli-Leali P (1982) Corrosion of the Harrington’s instrumentation and biological behaviour of the rod-human spine system. Biomaterials 3:246–248CrossRefPubMedGoogle Scholar
  3. 3.
    Cadosch D, Chan E, Gautschi O, Filgueira L (2009) Metal is not inert: role of metal ions released by biocorrosion in aseptic loosening—current concepts. J Biomed Mater Res A 91:1252–1262. doi: 10.1002/jbm.a.32625 CrossRefPubMedGoogle Scholar
  4. 4.
    Cundy WJ, Mascarenhas AR, Antoniou G, Freeman BJC, Cundy PJ (2015) Local and systemic metal ion release occurs intraoperatively during correction and instrumented spinal fusion for scoliosis. J Child Orthop 9:39–43CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cundy TP, Delaney CL, Rackham MD et al (2010) Chromium ion release from stainless steel pediatric scoliosis instrumentation. Spine 35:967–974CrossRefPubMedGoogle Scholar
  6. 6.
    del Rio J, Beguiristain J, Duart J (2007) Metal levels in corrosion of spinal implants. Eur Spine J 16:1055–1061. doi: 10.1007/s00586-007-0311-4 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gornet MF, Burkus JK, Harper ML, Chan FW, Skipor AK, Jacobs JJ (2013) Prospective study on serum metal levels in patients with metal-on-metal lumbar disc arthroplasty. Eur Spine J 22:741–746. doi: 10.1007/s00586-012-2581-8 CrossRefPubMedGoogle Scholar
  8. 8.
    Kirkpatrick JS, Venugopalan R, Beck P, Lemons J (2005) Corrosion on spinal implants. J Spinal Disord Tech 18:247–251PubMedGoogle Scholar
  9. 9.
    McPhee IB, Swanson CE (2007) Metal ion levels in patients with stainless steel spinal instrumentation. Spine 18:1963–1968CrossRefGoogle Scholar
  10. 10.
    Prikryl M, Srivastava SC, Viviani GR, Ives MB, Purdy GR (1989) Role of corrosion in Harrington and Luque rods failure. Biomaterials 10:109–117CrossRefPubMedGoogle Scholar
  11. 11.
    Tezer M, Kuzgun U, Hamzaoglu A, Ozturk C, Kabukcuoglu F, Sirvanci M (2005) Intraspinal metalloma resulting in late paraparesis. Arch Orthop Trauma Surg 125:417–421. doi: 10.1007/s00402-005-0802-x CrossRefPubMedGoogle Scholar
  12. 12.
    Caicedo MS, Desai R, McAllister K, Reddy A, Jacobs JJ, Hallab NJ (2009) Soluble and particulate Co–Cr–Mo alloy implant metals activate the inflammasome danger signaling pathway in human macrophages: a novel mechanism for implant debris reactivity. J Orthop Res 27:847–854. doi: 10.1002/jor.20826 CrossRefPubMedGoogle Scholar
  13. 13.
    Gristina AG (1994) Implant failure and the immune-incompetent fibro-inflammatory zone. Clin Orthop Relat Res 298:106–118Google Scholar
  14. 14.
    St. Pierre CA, Chan M, Iwakura Y, Ayers DC, Kurt-Jones EA, Finberg RW (2010) Periprosthetic osteolysis: characterising the innate immune response to titanium wear-particles. J Orthop Res 28:1418–1424. doi: 10.1002/jor.21149 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Torgerson S, Moe G, Jonsson R (1995) Immunocompetent cells adjacent to stainless steel and titanium miniplates and screws. Eur J Oral Sci 103:46–54CrossRefGoogle Scholar
  16. 16.
    Takahashi S, Delecrin J, Passuti N (2001) Intraspinal metallosis causing delayed neurologic symptoms after spinal instrumentation surgery. Spine 26:1495–1499CrossRefPubMedGoogle Scholar
  17. 17.
    Beguiristain J, del Rio J, Duart J, Barroso J, Silva A, Villas C (2006) Corrosion and late infection causing delayed paraparesis after spinal instrumentation. J Pediatr Orthop B 15:321–323CrossRefGoogle Scholar
  18. 18.
    Drummond J, Tran P, Fary C (2015) Metal on metal hip arthroplasty: a review of adverse reactions and patient management. J Funct Biomater 6:486–499. doi: 10.3390/jfb6030486 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Villarraga M, Cripton P, Teti S et al (2006) Wear and corrosion in retrieved thoracolumbar posterior internal fixation. Spine 31:2454–2462CrossRefPubMedGoogle Scholar
  20. 20.
    Yanese M, Sakou T, Taketomi E, Yone K (1995) Transpedicular fixation of the lumbar and lumbosacral spine with screws. Application of the Diapason system. Paraplegia 33:216–218Google Scholar
  21. 21.
    Francois J, Coessens R, Lauweryns P (2007) Early removal of a Maverick disc prosthesis: surgical findings and morphological changes. Acta Orthop Belg 73:122–127PubMedGoogle Scholar
  22. 22.
    Peterson HA (2005) Metallic implant removal in children. J Pediatr Orthop 25:107–115PubMedGoogle Scholar
  23. 23.
    Goldenberg Y, Tee JW, Salinas-La Rosa CM, Murphy M (2016) Spinal metallosis: a systematic review. Eur Spine J 25:1467–1473. doi: 10.1007/s00586-015-4347-6 CrossRefPubMedGoogle Scholar
  24. 24.
    Paukkeri EL, Korhonen R, Hamalainen M et al (2016) The inflammatory phenotype in failed metal-on-metal hip arthroplasty correlates with blood metal concentrations. PLoS One 11(5):e0155121. doi: 10.1371/journal.pone.0155121 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Botolin S, Merritt C, Erickson M (2012) Aseptic loosening of pedicle screw as a result of metal wear debris in a paediatric patient. Spine 38:E38–E42. doi: 10.1097/BRS.0b013e3182793e51 CrossRefGoogle Scholar
  26. 26.
    Jacobs JJ, Scipor AK, Campbell PA, Hallab NJ, Urban RM, Amstutz HC (2004) Can metal levels be used to monitor metal-on-metal hip arthroplasties? J Arthroplast 19:59–65. doi: 10.1016/j.arth.2004.09.019 CrossRefGoogle Scholar
  27. 27.
    Chang JD, Lee SS, Hur M, Seo EM, Chung YK, Lee CJ (2005) Revision total hip arthroplasty in hip joints with metallosis. J Arthroplast 20:568–573. doi: 10.1016/j.arth.2005.04.001 CrossRefGoogle Scholar
  28. 28.
    Levine BR, Hsu AR, Skipor AK et al (2013) Ten-year outcome of serum metal ion levels after primary total hip arthroplasty. J Bone Joint Surg Am 95:512–518. doi: 10.2106/JBJS.L.00471 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Engh CA, MacDonald SJ, Sritulanondha S, Thompson A, Naudie D, Engh CA (2009) Metal ion levels after metal-on-metal total hip arthroplasty: a randomized trial. Clin Orthop Relat Res 467:101–111. doi: 10.1007/s11999-008-0540-9 CrossRefPubMedGoogle Scholar
  30. 30.
    Munir S, Oliver RA, Zicat B, Walter WL, Walter WK, Walsh WR (2016) The histological and elemental characterisation of corrosion particles from taper junctions. Bone Joint Res 5:370–378. doi: 10.1302/2046-3758.59.2000507 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sampson B, Hart A (2012) Clinical usefulness of blood metal measurements to assess the failure of metal-on-metal hip implants. Ann Clin Biochem 49:118–131. doi: 10.1258/acb.2011.011141 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Savarino L, Greggi T, Martikos K, Lolli F, Greco M, Baldini N (2015) Long-term systemic metal distribution in patients with stainless steel spinal instrumentation. J Spinal Disord Tech 28:114–118CrossRefPubMedGoogle Scholar
  33. 33.
    Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoch M (2000) Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am 82:457–477CrossRefPubMedGoogle Scholar
  34. 34.
    Rackham M, Cundy T, Antoniou G, Freeman BJC, Sutherland LM, Cundy PJ (2010) Predictors of serum chromium levels after stainless steel posterior spinal instrumentation for adolescent idiopathic scoliosis. Spine 35:975–982CrossRefPubMedGoogle Scholar
  35. 35.
    Chalmers BP, Perry KI, Taunton MJ, Mabry TM, Abdel MP (2016) Diagnosis of adverse local tissue reactions following metal-on-metal hip arthroplasty. Curr Rev Musculoskelet Med 9:67–74. doi: 10.1007/s12178-016-9321-3 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kim YJ, Kassab F, Berven SH et al (2005) Serum levels of nickel and chromium after instrumented posterior spinal arthrodesis. Spine 30:923–926CrossRefPubMedGoogle Scholar
  37. 37.
    Cundy TP, Cundy WJ, Antoniou G, Sutherland LM, Freeman BJC, Cundy PJ (2014) Serum titanium, niobium, and aluminum levels two years following instrumented spinal fusion in children: does implant surface area predict serum metal ion levels? Eur Spine J 23:2393–2400. doi: 10.1007/s00586-014-3279-x CrossRefPubMedGoogle Scholar
  38. 38.
    Cundy TP, Antoniou G, Sutherland LM, Freeman BJC, Cundy PJ (2013) Serum titanium, niobium, and aluminum levels after instrumented spinal arthrodesis in children. Spine 38:564–570. doi: 10.1097/BRS.0b013e3182741961 CrossRefPubMedGoogle Scholar
  39. 39.
    Keegan G, Learmonth I, Case C (2007) Orthopaedic metals and their potential toxicity in the arthroplasty patient. J Bone Joint Surg Br 89:567–573. doi: 10.1302/0301-620X.89B5.18903 CrossRefPubMedGoogle Scholar
  40. 40.
    Zeh A, Becker C, Planert M, Lattke P, Wohlrab D (2009) Time-dependent release of cobalt and chromium ions into the serum following implantation of the metal-on-metal Maverick type artificial lumbar disc. Arch Orthop Trauma Surg 129:741–746. doi: 10.1007/s00402-008-0677-8 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.TorontoCanada
  2. 2.RoseneathCanada

Personalised recommendations