European Spine Journal

, Volume 26, Issue 8, pp 2038–2044 | Cite as

Ribosomal PCR assay of excised intervertebral discs from patients undergoing single-level primary lumbar microdiscectomy

  • Todd F. Alamin
  • Marcus Munoz
  • Alicia Zagel
  • Agnes Ith
  • Eugene Carragee
  • Ivan Cheng
  • Gaetano Scuderi
  • Indre Budvytiene
  • Niaz Banei
Original Article



To determine the presence of infectious microorganisms in the herniated discs of immunocompetent patients, using methodology that we hoped would be of higher sensitivity and specificity than has been reported in the past. Recent studies have demonstrated a significant rate of positive cultures for low virulent organisms in excised HNP samples (range 19–53%). These studies have served as the theoretical basis for a pilot trial, and then, a well done prospective randomized trial that demonstrated that systemic treatment with antibiotics may yield lasting improvements in a subset of patients with axial back pain. Whether the reported positive cultures in discectomy specimens represent true positives is as yet not proven, and critically important if underlying the basis of therapeutic approaches for chronic low back pain.


This consecutive case series from a single academic center included 44 patients with radiculopathy and MRI findings of lumbar HNP. Patients elected for lumbar microdiscectomy after failure of conservative management. All patients received primary surgery at a single spinal level in the absence of immune compromise. Excised disc material was analyzed with a real-time PCR assay targeting the 16S ribosomal RNA gene followed by amplicon sequencing. No concurrent cultures were performed. Inclusion criteria were as follows: sensory or motor symptoms in a single lumbar nerve distribution; positive physical examination findings including positive straight leg raise test, distributional weakness, and/or a diminished deep tendon reflexes; and magnetic resonance imaging of the lumbar spine positive for HNP in a distribution correlating with the radicular complaint.


The PCR assay for the 16S rRNA sequence was negative in all 44 patients (100%). 95% CI 0–8%.


Based on the data presented here, there does not appear to be a significant underlying rate of bacterial disc infection in immunocompetent patients presenting with radiculopathy from disc herniation.


Disc herniation PCR Disc infection Back pain 16S rRNA 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Borczuk P (2013) An evidence-based approach to the evaluation and treatment of low back pain in the emergency department. Emerg Med Pract 15:1–23 (Quiz-4) PubMedGoogle Scholar
  2. 2.
    Airaksinen O, Brox JI, Cedraschi C et al (2006) European guidelines for the management of chronic nonspecific low back pain. Eur Spine J 15(Suppl 2):S192–S300 (Chapter 4) CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dzutsev A, Goldszmid RS, Viaud S et al (2015) The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. Eur J Immunol 45:17–31CrossRefPubMedGoogle Scholar
  4. 4.
    Nathan C (2002) Points of control in inflammation. Nature 420:846–852CrossRefGoogle Scholar
  5. 5.
    Kamada N, Seo SU, Chen GY et al (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13:321–335CrossRefPubMedGoogle Scholar
  6. 6.
    Sekirov I, Russell SL, Antunes LC et al (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904CrossRefPubMedGoogle Scholar
  7. 7.
    Honda K, Littman DR (2012) The microbiome in infectious disease and inflammation. Annu Rev Immunol 30:759–795CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Casadevall A, Pirofski LA (1999) Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect Immun 67:3703–3713PubMedPubMedCentralGoogle Scholar
  9. 9.
    Stirling A, Worthington T, Rafiq M et al (2001) Association between sciatica and Propionibacterium acnes. Lancet (London, England) 357:2024–2025CrossRefGoogle Scholar
  10. 10.
    Stirling AJJM (2002) Association between sciatica and skin commensalsed. International Society for the Study of the Lumbar Spine, ClevelandGoogle Scholar
  11. 11.
    Agarwal V, Golish SR, Alamin TF (2011) Bacteriologic culture of excised intervertebral disc from immunocompetent patients undergoing single level primary lumbar microdiscectomy. J Spinal Disord Tech 24:397–400CrossRefPubMedGoogle Scholar
  12. 12.
    Urquhart DM, Zheng Y, Cheng AC et al (2015) Could low grade bacterial infection contribute to low back pain? A systematic review. BMC Med 13:13CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rigal J, Thelen T, Byrne F et al (2016) Prospective study using anterior approach did not show association between Modic 1 changes and low grade infection in lumbar spine. Eur Spine J 25:1000–1005. doi: 10.1007/s00586-016-4396-5 CrossRefPubMedGoogle Scholar
  14. 14.
    van den Bergh MR, Bogaert D, Dun L et al (2012) Alternative sampling methods for detecting bacterial pathogens in children with upper respiratory tract infections. J Clin Microbiol 50:4134–4137CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Torres A, El-Ebiary M, Padro L et al (1994) Validation of different techniques for the diagnosis of ventilator-associated pneumonia. Comparison with immediate postmortem pulmonary biopsy. Am J Respir Crit Care Med 149:324–331CrossRefPubMedGoogle Scholar
  16. 16.
    Noordhoek GT, Kolk AH, Bjune G et al (1994) Sensitivity and specificity of PCR for detection of Mycobacterium tuberculosis: a blind comparison study among seven laboratories. J Clin Microbiol 32:277–284PubMedPubMedCentralGoogle Scholar
  17. 17.
    Insa R, Marin M, Martin A et al (2012) Systematic use of universal 16S rRNA gene polymerase chain reaction (PCR) and sequencing for processing pleural effusions improves conventional culture techniques. Medicine 91:103–110CrossRefPubMedGoogle Scholar
  18. 18.
    Clarridge JE 3rd (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17:840–862 (table of contents) CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hartley JC, Harris KA (2014) Molecular techniques for diagnosing prosthetic joint infections. J Antimicrob Chemother 69(Suppl 1):121–124CrossRefGoogle Scholar
  20. 20.
    Meyer T, Franke G, Polywka SK et al (2014) Improved detection of bacterial central nervous system infections by use of a broad-range PCR assay. J Clin Microbiol 52:1751–1753CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Levy PY, Fournier PE, Fenollar F et al (2013) Systematic PCR detection in culture-negative osteoarticular infections. Am J Med 126:1143 (e25–33) CrossRefPubMedGoogle Scholar
  22. 22.
    Lecouvet F, Irenge L, Vandercam B et al (2004) The etiologic diagnosis of infectious discitis is improved by amplification-based DNA analysis. Arthritis Rheum 50:2985–2994CrossRefPubMedGoogle Scholar
  23. 23.
    Wilson KH (1994) Detection of culture-resistant bacterial pathogens by amplification and sequencing of ribosomal DNA. Clin Infect Dis Off Publ Infect Dis Soc Am 18:958–962CrossRefGoogle Scholar
  24. 24.
    Srinivasan R, Karaoz U, Volegova M et al (2015) Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PLoS One 10:e0117617CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Clifford RJ, Milillo M, Prestwood J et al (2012) Detection of bacterial 16S rRNA and identification of four clinically important bacteria by real-time PCR. PLoS One 7:e48558CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Fritzell P, Bergstrom T, Welinder-Olsson C (2004) Detection of bacterial DNA in painful degenerated spinal discs in patients without clinical signs of infection. Eur Spine J 13:702–706CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Capoor M, Ruzicka F, Machackova T et al (2016) Prevalence of Propionibacterium acnes in intervertebral discs of patients undergoing lumbar microdiscectomy: a prospective cross-sectional study. PLoS One 11(8):e0161676. doi: 10.1371/journal.pone.0161676 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    McNeil CJ, Luo RF, Vogel H, Banaei N, Ho DY (2011) Brain abscess caused by Phaeoacremonium parasiticum in an immunocompromised patient. J Clin Microbiol 49:1171–1174CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lau A, Chen S, Sorrell T et al (2007) Development and clinical application of a panfungal PCR assay to detect and identify fungal DNA in tissue specimens. J Clin Microbiol 45:380–385CrossRefPubMedGoogle Scholar
  30. 30.
    Rickerts V, Khot PD, Myerson D et al (2011) Comparison of quantitative real time PCR with sequencing and ribosomal RNA-FISH for the identification of fungi in formalin fixed, paraffin-embedded tissue specimens. BMC Infect Dis 11:202CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Berthelot P, Carricajo A, Aubert G et al (2006) Outbreak of postoperative shoulder arthritis due to Propionibacterium acnes infection in nondebilitated patients. Infect Control Hosp Epidemiol 27:987–990CrossRefPubMedGoogle Scholar
  32. 32.
    Aycicek H, Aydogan H, Kucukkaraaslan A et al (2004) Assessment of the bacterial contamination on hands of hospital food handlers. Food Control 15:253–259CrossRefGoogle Scholar
  33. 33.
    Kramer A, Schwebke I, Kampf G (2006) How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis 6:130CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Scott E, Duty S, McCue K (2009) A critical evaluation of methicillin-resistant Staphylococcus aureus and other bacteria of medical interest on commonly touched household surfaces in relation to household demographics. Am J Infect Control 37:447–453CrossRefPubMedGoogle Scholar
  35. 35.
    Evans CA, Mattern KL, Hallam SL (1978) Isolation and identification of Peptococcus saccharolyticus from human skin. J Clin Microbiol 7:261–264PubMedPubMedCentralGoogle Scholar
  36. 36.
    Brook I, Frazier EH (1991) Infections caused by Propionibacterium species. Rev Infect Dis 13:819–822CrossRefPubMedGoogle Scholar
  37. 37.
    Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214CrossRefGoogle Scholar
  38. 38.
    Sorensen P, Ejlertsen T, Aaen D et al (2008) Bacterial contamination of surgeons gloves during shunt insertion: a pilot study. Br J Neurosurg 22:675–677CrossRefPubMedGoogle Scholar
  39. 39.
    Rollason J, McDowell A, Albert HB et al (2013) Genotypic and antimicrobial characterisation of Propionibacterium acnes isolates from surgically excised lumbar disc herniations. Biomed Res Int 2013:530382. doi: 10.1155/2013/530382 (Epub Aug 28) CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Albert HB, Lambert P, Rollason J et al (2013) Does nuclear tissue infected with bacteria following disc herniations lead to Modic changes in the adjacent vertebrae? Eur Spine J 22:690–696CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Albert HB, Sorensen JS, Christensen BS et al (2013) Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (Modic type 1 changes): a double-blind randomized clinical controlled trial of efficacy. Eur Spine J 22:697–707CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Al-Falahi MA, Salal MH, Abdul-Wahab DM (2014) Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (modic type i changes): a randomized clinical controlled trial of efficacy. Iraqi Post Grad Med J 13(3):390–398Google Scholar
  43. 43.
    Almefty KK, Turner JD, Theodore N (2013) From narcotics to antibiotics: evolving concepts in the treatment of lower back pain. World Neurosurg 80:442–443CrossRefPubMedGoogle Scholar
  44. 44.
    O’Dowd J, Casey A (2013) Antibiotics a cure for back pain, a false dawn or a new era? Eur Spine J 22:1694–1697CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sotto A, Dupeyron A (2013) Letter to the editor concerning: “antibiotic treatment in patients with chronic low back pain and vertebral bone edema (Modic type 1 changes): a double-blind randomized controlled trial of efficacy” by Albert HB et al. Eur Spine J 22:697–707 (Eur Spine J;22:1704-5) CrossRefGoogle Scholar
  46. 46.
    Ahmad Z, Rai A, Donell S et al (2013) Letter to the editor concerning: “Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (Modic type 1 changes): a double-blind randomized controlled trial of efficacy” by Albert HB et al. Eur Spine J 22:697–707 (Eur Spine J;22:2344-5) CrossRefGoogle Scholar
  47. 47.
    Lings S (2014) Antibiotics for low back pain? Eur Spine J 23:469–472CrossRefPubMedGoogle Scholar
  48. 48.
    Huang YJ, Boushey HA (2015) The microbiome in asthma. J Allergy Clin Immunol 135:25–30CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hullar MA, Fu BC (2014) Diet, the gut microbiome, and epigenetics. Cancer J (Sudbury, Mass.) 20:170–175CrossRefGoogle Scholar
  50. 50.
    Galland L (2014) The gut microbiome and the brain. J Med Food 17:1261–1272CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Plaza-Diaz J, Gomez-Llorente C, Fontana L et al (2014) Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics. World J Gastroenterol 20:15632–15649CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ciccia F, Rizzo A, Triolo G (2016) Subclinical gut inflammation in ankylosing spondylitis. Curr Opin Rheumatol 28:89–96CrossRefPubMedGoogle Scholar
  53. 53.
    Kabeerdoss J, Sandhya P, Danda D (2016) Gut inflammation and microbiome in spondyloarthritis. Rheumatol Int 36(4):457–468CrossRefPubMedGoogle Scholar
  54. 54.
    Wendling D, Vuitton L, Koch S et al (2015) Spondyloarthritis and the gut: a new look. Jt Bone Spine (revue du rhumatisme) 82:77–79CrossRefGoogle Scholar
  55. 55.
    Leirisalo-Repo M (2005) Reactive arthritis. Scand J Rheumatol 34:251–259CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Todd F. Alamin
    • 1
  • Marcus Munoz
    • 1
  • Alicia Zagel
    • 1
  • Agnes Ith
    • 1
  • Eugene Carragee
    • 1
  • Ivan Cheng
    • 1
  • Gaetano Scuderi
    • 1
  • Indre Budvytiene
    • 2
    • 3
    • 4
  • Niaz Banei
    • 2
    • 3
    • 4
  1. 1.Department of Orthopaedic SurgeryStanford University School of MedicineRedwood CityUSA
  2. 2.Department of PathologyStanford University School of MedicineStanfordUSA
  3. 3.Division of Infectious Diseases and Geographic Medicine, Department of MedicineStanford University School of MedicineStanfordUSA
  4. 4.Clinical Microbiology LaboratoryStanford Health CareStanfordUSA

Personalised recommendations