Advertisement

European Spine Journal

, Volume 27, Issue 1, pp 117–124 | Cite as

Clinical classes of injured workers with chronic low back pain: a latent class analysis with relationship to working status

  • Lisa C. CarlessoEmail author
  • Y. Raja Rampersaud
  • Aileen M. Davis
Original Article

Abstract

Purpose

To determine (a) clinical classes of injured workers with chronic low back pain (CLBP), (b) predictors of class membership and (c) associations of classes with baseline work status.

Methods

Patients with CLBP from a tertiary care outpatient clinic in Toronto, Canada were sampled. Latent class analysis was applied to determine class structure using physical, psychological and coping indicators. Classes were interpreted by class-specific means and analyzed for predictors of membership. Lastly, association of the classes with being off work was modeled.

Results

A 3-class model was chosen based on fit criteria, theoretical and clinical knowledge of this population. The resultant 3 classes represented low, moderate and high levels of clinical severity. Predictors of being in the high severity group compared to the low severity group were < high school education [odds ratio (OR) 3.06, 95% CI (1.47, 6.37)] and comorbidity total [OR 1.28, 95% CI (1.03, 1.59)]. High severity class membership was associated with four times increased risk of being off work at baseline compared to those in the low severity group [OR 3.98, 95% CI (1.61, 6.34)].

Conclusions

In a cohort of injured workers with CLBP, 3 clinical classes were identified with distinct psychological and physical profiles. These profiles are useful in aiding clinicians to identify patients of high clinical severity who may be potentially at risk for problematic return to work.

Keywords

Low back injury Workers Latent variable mixture model Clinical classes 

Notes

Acknowledgements

The authors acknowledge Darlene Stafford, Registered Physiotherapist, Clinical Practice Leader, Back and Neck Specialty Program, Altum Health, University Health Network and Rajiv Gandhi MD, Manager of Outcomes Measure and Reporting Team, Altum Health, University Health Network, for the assistance in data acquisition. LC was funded by a Fellowship from the Canadian Institutes of Health Research.

Compliance with ethical standards

Conflict of interest

None of the authors has any potential conflict of interest.

References

  1. 1.
    Baldwin ML (2004) Reducing the costs of work-related musculoskeletal disorders: targeting strategies to chronic disability cases. J Electromyogr Kinesiol 14(1):33–41. doi: 10.1016/j.jelekin.2003.09.013 CrossRefPubMedGoogle Scholar
  2. 2.
    Verkerk K, Luijsterburg PA, Miedema HS, Pool-Goudzwaard A, Koes BW (2012) Prognostic factors for recovery in chronic nonspecific low back pain: a systematic review. Phys Ther 92(9):1093–1108. doi: 10.2522/ptj.20110388 CrossRefPubMedGoogle Scholar
  3. 3.
    Steenstra IA, Verbeek JH, Heymans MW, Bongers PM (2005) Prognostic factors for duration of sick leave in patients sick listed with acute low back pain: a systematic review of the literature. Occup Environ Med 62(12):851–860. doi: 10.1136/oem.2004.015842 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Werner EL, Cote P (2009) Low back pain and determinants of sickness absence. Eur J Gen Pract 15(2):74–79. doi: 10.1080/13814780903051866 CrossRefPubMedGoogle Scholar
  5. 5.
    Nolet PS, Kristman VL, Cote P, Carroll LJ, Hincapie CA, David Cassidy J (2016) The association between a lifetime history of work-related low back injury and future low back pain: a population-based cohort study. Eur Spine J 25(4):1242–1250. doi: 10.1007/s00586-015-4151-3 CrossRefPubMedGoogle Scholar
  6. 6.
    Kamper SJ, Apeldoorn AT, Chiarotto A, Smeets RJ, Ostelo RW, Guzman J, van Tulder MW (2015) Multidisciplinary biopsychosocial rehabilitation for chronic low back pain: cochrane systematic review and meta-analysis. BMJ 350:444. doi: 10.1136/bmj.h444 CrossRefGoogle Scholar
  7. 7.
    Pillastrini P, Gardenghi I, Bonetti F, Capra F, Guccione A, Mugnai R, Violante F (2012) An updated overview of clinical guidelines for chronic low back pain management in primary care. Joint Bone Spine Mar;79 (2):176-185Google Scholar
  8. 8.
    Costa LDC, Koes BW, Pransky G, Borkan J, Maher CG, Smeets RJ (2013) Primary care research priorities in low back pain: an update. Spine (Phila Pa 1976) 38(2):148–156. doi: 10.1097/BRS.0b013e318267a92f CrossRefGoogle Scholar
  9. 9.
    Viniol A, Jegan N, Hirsch O, Leonhardt C, Brugger M, Strauch K, Barth J, Baum E, Becker A (2013) Chronic low back pain patient groups in primary care–a cross sectional cluster analysis. BMC Musculoskelet Disord 16(14):294CrossRefGoogle Scholar
  10. 10.
    Rabey M, Slater H, O’Sullivan P, Beales D, Smith A (2015) Somatosensory nociceptive characteristics differentiate subgroups in people with chronic low back pain: a cluster analysis. Pain 156(10):1874–1884. doi: 10.1097/j.pain.0000000000000244 CrossRefPubMedGoogle Scholar
  11. 11.
    Rabey M, Smith A, Beales D, Slater H, O’Sullivan P (2016) Differing psychologically derived clusters in people with chronic low back pain are associated with different multidimensional profiles. Clin J Pain. doi: 10.1097/ajp.0000000000000363 PubMedGoogle Scholar
  12. 12.
    Chen C, Hogg-Johnson S, Smith P (2007) The recovery patterns of back pain among workers with compensated occupational back injuries. Occup Environ Med 64(8):534–540. doi: 10.1136/oem.2006.029215 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dunn K, Jordan K, Croft P (2006) Characterizing the course of low back pain: a latent class analysis. Am J Epidemiol 163(8):754–761CrossRefPubMedGoogle Scholar
  14. 14.
    Hawker GA, Mian S, Kendzerska T, French M (2011) Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res (Hoboken) 63(Suppl 11):S240–S252. doi: 10.1002/acr.20543 CrossRefGoogle Scholar
  15. 15.
    Roland M, Fairbank J (2000) The Roland–Morris disability questionnaire and the oswestry disability questionnaire. Spine (Phila Pa 1976) 25(24):3115–3124CrossRefGoogle Scholar
  16. 16.
    Kroenke K, Spitzer R, Williams J (2001) The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med 16(9):606–613CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Watson D, Clark LA, Tellegen A (1988) Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol 54(6):1063–1070CrossRefPubMedGoogle Scholar
  18. 18.
    Waddell G, Newton M, Henderson I, Somerville D, Main CJ (1993) A Fear-Avoidance Beliefs Questionnaire (FABQ) and the role of fear-avoidance beliefs in chronic low back pain and disability. Pain 52(2):157–168CrossRefPubMedGoogle Scholar
  19. 19.
    Sullivan M, Bishop S, Pivik J (1995) The pain catastrophizing scale: development and validation. Psychol Assess 7:524–532CrossRefGoogle Scholar
  20. 20.
    Osman A, Barrios FX, Kopper BA, Hauptmann W, Jones J, O’Neill E (1997) Factor structure, reliability, and validity of the Pain Catastrophizing Scale. J Behav Med 20(6):589–605CrossRefPubMedGoogle Scholar
  21. 21.
    Osman A, Barrios FX, Gutierrez PM, Kopper BA, Merrifield T, Grittmann L (2000) The Pain Catastrophizing Scale: further psychometric evaluation with adult samples. J Behav Med 23(4):351–365CrossRefPubMedGoogle Scholar
  22. 22.
    Campbell-Sills L, Stein MB (2007) Psychometric analysis and refinement of the Connor-davidson Resilience Scale (CD-RISC): validation of a 10-item measure of resilience. J Trauma Stress 20(6):1019–1028. doi: 10.1002/jts.20271 CrossRefPubMedGoogle Scholar
  23. 23.
    Nicholas MK (2007) The pain self-efficacy questionnaire: taking pain into account. Eur J Pain 11(2):153–163. doi: 10.1016/j.ejpain.2005.12.008 CrossRefPubMedGoogle Scholar
  24. 24.
    Nylund K, Asparouhov T, Muthén B (2007) Deciding on the number of classes in LCA and GMM: a Monte Carlo Simulation Study. Struct Equ Model 14(4):535–569CrossRefGoogle Scholar
  25. 25.
    Lanza S, Tan X, Bray B (2013) Latent class analysis with distal outcomes: a flexible model-based approach. Struct Equation Model A Multidiscip J 1:1–26Google Scholar
  26. 26.
    Asparouhov T, Muthén B (2015) Auxiliary variables in mixture modeling: Using the BCH method in Mplus to estimate a distal outcome model and an arbitrary second model. Mplus Web Notes: No 21Google Scholar
  27. 27.
    Asparouhov T, Muthén B (2014) Auxiliary variables in mixture modeling: 3-step approaches using MplusGoogle Scholar
  28. 28.
    Shaw WS, Pransky G, Patterson W, Linton SJ, Winters T (2007) Patient clusters in acute, work-related back pain based on patterns of disability risk factors. J Occup Environ Med 49(2):185–193. doi: 10.1097/01.jom.0000254205.47334.c3 CrossRefPubMedGoogle Scholar
  29. 29.
    Reme SE, Shaw WS, Steenstra IA, Woiszwillo MJ, Pransky G, Linton SJ (2012) Distressed, immobilized, or lacking employer support? A sub-classification of acute work-related low back pain. J Occup Rehabil 22(4):541–552. doi: 10.1007/s10926-012-9370-4 CrossRefPubMedGoogle Scholar
  30. 30.
    Steenstra IA, Busse JW, Hogg-Johnson S (2013) Predicting return to work for workers with low-back pain. In: Loisel P, Anema RJ (eds) Handbook of work disability: prevention and management. Springer, New York, pp 255–266. doi: 10.1007/978-1-4614-6214-9_16 CrossRefGoogle Scholar
  31. 31.
    Fairbank J, Pynsent P (2000) The Oswestry Disability Index. Spine (Phila Pa 1976) 25(22):2940–2953CrossRefGoogle Scholar
  32. 32.
    Davidson J (2015) The Connor-Davidson Resilience Scale. http://www.cd-risc.com/user-guide.php. Accessed March 16, 2016
  33. 33.
    Cinar-Medeni O, Elbasan B, Duzgun I (2016) Low back pain prevalence in healthcare professionals and identification of factors affecting low back pain. J Back Musculoskelet Rehabil. doi: 10.3233/bmr-160571 PubMedGoogle Scholar
  34. 34.
    Kim HJ, Choo J (2016) Emotional Labor: links to Depression and Work-Related Musculoskeletal Disorders in Call Center Workers. Workplace Health Saf. doi: 10.1177/2165079916667512 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Lisa C. Carlesso
    • 1
    • 2
    Email author
  • Y. Raja Rampersaud
    • 3
  • Aileen M. Davis
    • 4
    • 5
  1. 1.School of Rehabilitation, Faculty of MedicineUniversité de MontréalMontréalCanada
  2. 2.Hôpital Maisonneuve-Rosemont Research CentreMontréalCanada
  3. 3.Division of Orthopedic Surgery, Department of SurgeryUniversity of TorontoTorontoCanada
  4. 4.Health Care and Outcomes Research, Toronto Western Research InstituteUniversity Health NetworkTorontoCanada
  5. 5.Department of Physical Therapy and Institute of Rehabilitation Science and Institute of Health, Policy, Management and EvaluationUniversity of TorontoTorontoCanada

Personalised recommendations