Advertisement

European Spine Journal

, Volume 26, Issue 1, pp 20–25 | Cite as

Increased intrathecal pressure after traumatic spinal cord injury: an illustrative case presentation and a review of the literature

  • Lukas Grassner
  • Peter A. Winkler
  • Martin Strowitzki
  • Volker Bühren
  • Doris Maier
  • Michael Bierschneider
Grand Rounds

Abstract Open image in new window

Purpose

Early surgical management after traumatic spinal cord injury (SCI) is nowadays recommended. Since posttraumatic ischemia is an important sequel after SCI, maintenance of an adequate mean arterial pressure (MAP) within the first week remains crucial in order to warrant sufficient spinal cord perfusion. However, the contribution of raised intraparenchymal and consecutively increased intrathecal pressure has not been implemented in treatment strategies.

Methods

Case report and review of the literature.

Results

Here we report a case of a 54-year old man who experienced a thoracic spinal cord injury after a fall. CT-examination revealed complex fractures of the thoracic spine. The patient underwent prompt surgical intervention. Intraoperatively, fractured parts of the ascending Th5 facet joint were displaced into the spinal cord itself. Upon removal, excessive protruding of medullary tissue was observed over several minutes. This demonstrates the clinical relevance of increased intrathecal pressure in some patients.

Conclusion

Monitoring and counteracting raised intrathecal pressure should guide clinical decision-making in the future in order to ensure optimal spinal cord perfusion pressure for every affected individual.

Keywords

Spinal cord injury Spine surgery Intraspinal pressure Outcome 

Notes

Compliance with ethical standards

Conflict of interest

None.

References

  1. 1.
    Freeman LW, Wright TW (1953) Experimental observations of concussion and contusion of the spinal cord. Ann Surg 137:433–443CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Perkins PG, Deane RH (1988) Long-term follow-up of six patients with acute spinal injury following dural decompression. Injury 19:397–401CrossRefPubMedGoogle Scholar
  3. 3.
    Zhu H, Feng YP, Young W, You SW, Shen XF, Liu YS, Ju G (2008) Early neurosurgical intervention of spinal cord contusion: an analysis of 30 cases. Chin Med J 121:2473–2478PubMedGoogle Scholar
  4. 4.
    Walters BC, Hadley MN, Hurlbert RJ, Aarabi B, Dhall SS, Gelb DE, Harrigan MR, Rozelle CJ, Ryken TC, Theodore N, American Association of Neurological S, Congress of Neurological S (2013) Guidelines for the management of acute cervical spine and spinal cord injuries: 2013 update. Neurosurgery 60(Suppl 1):82–91. doi: 10.1227/01.neu.0000430319.32247.7f CrossRefPubMedGoogle Scholar
  5. 5.
    Ryken TC, Hurlbert RJ, Hadley MN, Aarabi B, Dhall SS, Gelb DE, Rozzelle CJ, Theodore N, Walters BC (2013) The acute cardiopulmonary management of patients with cervical spinal cord injuries. Neurosurgery 72(Suppl 2):84–92. doi: 10.1227/NEU.0b013e318276ee16 CrossRefPubMedGoogle Scholar
  6. 6.
    Leonard AV, Thornton E, Vink R (2015) The relative contribution of edema and hemorrhage to raised intrathecal pressure after traumatic spinal cord injury. J Neurotrauma 32:397–402. doi: 10.1089/neu.2014.3543 CrossRefPubMedGoogle Scholar
  7. 7.
    Saadoun S, Bell BA, Verkman AS, Papadopoulos MC (2008) Greatly improved neurological outcome after spinal cord compression injury in AQP4-deficient mice. Brain 131:1087–1098. doi: 10.1093/brain/awn014 CrossRefPubMedGoogle Scholar
  8. 8.
    Kwon BK, Curt A, Belanger LM, Bernardo A, Chan D, Markez JA, Gorelik S, Slobogean GP, Umedaly H, Giffin M, Nikolakis MA, Street J, Boyd MC, Paquette S, Fisher CG, Dvorak MF (2009) Intrathecal pressure monitoring and cerebrospinal fluid drainage in acute spinal cord injury: a prospective randomized trial. J Neurosurg Spine 10:181–193. doi: 10.3171/2008.10.SPINE08217 CrossRefPubMedGoogle Scholar
  9. 9.
    Marmarou A (2007) A review of progress in understanding the pathophysiology and treatment of brain edema. Neurosurg Focus 22:E1Google Scholar
  10. 10.
    Miller JD, Becker DP, Ward JD, Sullivan HG, Adams WE, Rosner MJ (1977) Significance of intracranial hypertension in severe head injury. J Neurosurg 47:503–516. doi: 10.3171/jns.1977.47.4.0503 CrossRefPubMedGoogle Scholar
  11. 11.
    Saul TG, Ducker TB (1982) Effect of intracranial pressure monitoring and aggressive treatment on mortality in severe head injury. J Neurosurg 56:498–503. doi: 10.3171/jns.1982.56.4.0498 CrossRefPubMedGoogle Scholar
  12. 12.
    Fehlings MG, Vaccaro A, Wilson JR, Singh A, Cadotte DW, Harrop JS, Aarabi B, Shaffrey C, Dvorak M, Fisher C, Arnold P, Massicotte EM, Lewis S, Rampersaud R (2012) Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS One 7:e32037. doi: 10.1371/journal.pone.0032037 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Grassner L, Wutte C, Klein B, Mach O, Riesner S, Panzer S, Vogel M, Buhren V, Strowitzki M, Vastmans J, Maier D (2016) Early decompression (<8 h) after traumatic cervical spinal cord injury improves functional outcome as assessed by Spinal Cord Independence Measure (SCIM) after 1 year. J Neurotrauma. doi: 10.1089/neu.2015.4325 PubMedGoogle Scholar
  14. 14.
    Jug M, Kejzar N, Vesel M, Al Mawed S, Dobravec M, Herman S, Bajrovic FF (2015) Neurological recovery after traumatic cervical spinal cord injury is superior if surgical decompression and instrumented fusion are performed within 8 h versus 8–24 h after injury: a single center experience. J Neurotrauma. doi: 10.1089/neu.2014.3767 PubMedGoogle Scholar
  15. 15.
    Carlson GD, Gorden CD, Nakazowa S, Wada E, Warden K, LaManna JC (2000) Perfusion-limited recovery of evoked potential function after spinal cord injury. Spine 25:1218–1226CrossRefPubMedGoogle Scholar
  16. 16.
    Saadoun S, Werndle MC, Lopez de Heredia L, Papadopoulos MC (2016) The dura causes spinal cord compression after spinal cord injury. Br J Neurosurg. doi: 10.3109/02688697.2016.1173191 PubMedGoogle Scholar
  17. 17.
    Werndle MC, Saadoun S, Phang I, Czosnyka M, Varsos GV, Czosnyka ZH, Smielewski P, Jamous A, Bell BA, Zoumprouli A, Papadopoulos MC (2014) Monitoring of spinal cord perfusion pressure in acute spinal cord injury: initial findings of the injured spinal cord pressure evaluation study*. Crit Care Med 42:646–655. doi: 10.1097/CCM.0000000000000028 CrossRefPubMedGoogle Scholar
  18. 18.
    Phang I, Werndle MC, Saadoun S, Varsos G, Czosnyka M, Zoumprouli A, Papadopoulos MC (2015) Expansion duroplasty improves intraspinal pressure, spinal cord perfusion pressure, and vascular pressure reactivity index in patients with traumatic spinal cord injury: injured spinal cord pressure evaluation study. J Neurotrauma 32:865–874. doi: 10.1089/neu.2014.3668 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Phang I, Papadopoulos MC (2015) Intraspinal pressure monitoring in a patient with spinal cord injury reveals different intradural compartments: injured spinal cord pressure evaluation (ISCoPE) study. Neurocrit Care 23:414–418. doi: 10.1007/s12028-015-0153-6 CrossRefPubMedGoogle Scholar
  20. 20.
    Leypold BG, Flanders AE, Burns AS (2008) The early evolution of spinal cord lesions on MR imaging following traumatic spinal cord injury. AJNR Am J Neuroradiol 29:1012–1016. doi: 10.3174/ajnr.A0962 CrossRefPubMedGoogle Scholar
  21. 21.
    Kulkarni MV, McArdle CB, Kopanicky D, Miner M, Cotler HB, Lee KF, Harris JH (1987) Acute spinal cord injury: MR imaging at 1.5 T. Radiology 164:837–843. doi: 10.1148/radiology.164.3.3615885 CrossRefPubMedGoogle Scholar
  22. 22.
    Sharma HS, Winkler T, Stalberg E, Olsson Y, Dey PK (1991) Evaluation of traumatic spinal cord edema using evoked potentials recorded from the spinal epidural space. An experimental study in the rat. J Neurol Sci 102:150–162CrossRefPubMedGoogle Scholar
  23. 23.
    Harwell DM, Gibson JL, Fessler RD, Holtz J, Pettigrew DB, Ct Kuntz (2016) Pia mater significantly contributes to spinal cord intraparenchymal pressure in a simulated model of edema. Spine 41:E524–E529. doi: 10.1097/BRS.0000000000001306 CrossRefPubMedGoogle Scholar
  24. 24.
    Phang I, Zoumprouli A, Saadoun S, Papadopoulos MC (2016) Safety profile and probe placement accuracy of intraspinal pressure monitoring for traumatic spinal cord injury: injured spinal cord pressure evaluation study. J Neurosurg Spine. doi: 10.3171/2016.1.SPINE151317 PubMedGoogle Scholar
  25. 25.
    Aimedieu P, Grebe R (2004) Tensile strength of cranial pia mater: preliminary results. J Neurosurg 100:111–114. doi: 10.3171/jns.2004.100.1.0111 CrossRefPubMedGoogle Scholar
  26. 26.
    LoPachin RM, Gaughan CL, Lehning EJ, Kaneko Y, Kelly TM, Blight A (1999) Experimental spinal cord injury: spatiotemporal characterization of elemental concentrations and water contents in axons and neuroglia. J Neurophysiol 82:2143–2153PubMedGoogle Scholar
  27. 27.
    Oshio K, Binder DK, Yang B, Schecter S, Verkman AS, Manley GT (2004) Expression of aquaporin water channels in mouse spinal cord. Neuroscience 127:685–693. doi: 10.1016/j.neuroscience.2004.03.016 CrossRefPubMedGoogle Scholar
  28. 28.
    Nesic O, Guest JD, Zivadinovic D, Narayana PA, Herrera JJ, Grill RJ, Mokkapati VU, Gelman BB, Lee J (2010) Aquaporins in spinal cord injury: the janus face of aquaporin 4. Neuroscience 168:1019–1035. doi: 10.1016/j.neuroscience.2010.01.037 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Leonard AV, Thornton E, Vink R (2013) Substance P as a mediator of neurogenic inflammation after balloon compression induced spinal cord injury. J Neurotrauma 30:1812–1823. doi: 10.1089/neu.2013.2993 CrossRefPubMedGoogle Scholar
  30. 30.
    Mortazavi MM, Verma K, Harmon OA, Griessenauer CJ, Adeeb N, Theodore N, Tubbs RS (2015) The microanatomy of spinal cord injury: a review. Clin Anat 28:27–36. doi: 10.1002/ca.22432 CrossRefPubMedGoogle Scholar
  31. 31.
    Carlson GD, Warden KE, Barbeau JM, Bahniuk E, Kutina-Nelson KL, Biro CL, Bohlman HH, LaManna JC (1997) Viscoelastic relaxation and regional blood flow response to spinal cord compression and decompression. Spine 22:1285–1291CrossRefPubMedGoogle Scholar
  32. 32.
    Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75:15–26. doi: 10.3171/jns.1991.75.1.0015 CrossRefPubMedGoogle Scholar
  33. 33.
    Guha A, Tator CH, Rochon J (1989) Spinal cord blood flow and systemic blood pressure after experimental spinal cord injury in rats. Stroke 20:372–377CrossRefPubMedGoogle Scholar
  34. 34.
    Lazaridis C, Andrews CM (2014) Traumatic spinal cord injury: learn from the brain!*. Crit Care Med 42:749–750. doi: 10.1097/CCM.0000000000000077 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Center for Spinal Cord InjuriesTrauma Center MurnauMurnauGermany
  2. 2.Department of NeurosurgeryTrauma Center MurnauMurnauGermany
  3. 3.Institute of Molecular Regenerative MedicineParacelsus Medical UniversitySalzburgAustria
  4. 4.Spinal Cord Injury and Tissue Regeneration Center SalzburgParacelsus Medical UniversitySalzburgAustria
  5. 5.Department of Neurosurgery, Christian Doppler Clinic SalzburgParacelsus Medical UniversitySalzburgAustria

Personalised recommendations