European Spine Journal

, Volume 25, Issue 9, pp 2833–2841 | Cite as

Effects of volitional spine stabilization on lifting task in recurrent low back pain population

Original Article



To examine the influence of volitional preemptive abdominal contraction (VPAC) and recurrent low back pain (rLBP) on trunk mechanics and neuromuscular control during a symmetric lifting task.


A 2 × 2 crossover mixed design was used to examine the effects of VPAC and group. Thirty-seven healthy individuals and 32 rLBP individuals performed symmetric box lifting trials with and without VPAC to a 1-m height table 3D trunk, pelvis, and hip joint angle and electromyographic magnitude variables were obtained. Selected variables were analyzed using ANOVA.


The VPAC induced differences in joint kinematics and muscle activity in rLBP and healthy subjects during symmetric lifting. A significant two-way interaction effect was observed for the semitendinosus activity. The VPAC increased external oblique muscle activity, reduced erector spinae and multifidus muscles activity, and induced greater trunk flexion angle, greater trunk side flexion angle, and greater hip flexion angle, and decreased pelvis obliquity angle in both groups. In addition, the rLBP subjects presented with a reduced external oblique and gluteus maximus muscle activity, greater erector spinae and multifidus muscles activity, and greater pelvis posterior tilt angle.


Our results provide evidence that a VPAC strategy performed during symmetric lifting may potentially reduce exposure to biomechanical factors that can contribute to lumbar spine injury. The hamstring muscles may play an important role in achieving pelvic balance during the lifting maneuver. Incorporating the VPAC during dynamic stressful activities appears to help improve sensorimotor control and facilitate positioning of the lower extremities and the pelvis, while protecting the lumbar spine.


Spine stability Low back pain Lifting Spine biomechanics Injury prevention 


Compliance with ethical standards

Conflict of interest

None of the authors has any potential conflict of interest


  1. 1.
    Martin BI, Turner JA, Mirza SK (2009) Trends in health care expenditures, utilization, and health status among US adults with spine problems. Spine 34(19):2077–2084CrossRefPubMedGoogle Scholar
  2. 2.
    Hayden JA, Cartwright JL, Riley RD, Vantulder MW, Chronic Low Back Pain IPDM-AG (2012) Exercise therapy for chronic low back pain: protocol for an individual participant data meta-analysis. Syst Rev 1(64):64. doi: 10.1186/2046-4053-1-64 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Manchikanti L, Helm S, Singh V, Benyamin RM, Datta S, Hayek SM, Fellows B, Boswell MV, Asipp (2009) An algorithmic approach for clinical management of chronic spinal pain. Pain Phys 12(4):E225–E264Google Scholar
  4. 4.
    Manchikanti L, Glaser SE, Wolfer L, Derby R, Cohen SP (2009) Systematic review of lumbar discography as a diagnostic test for chronic low back pain. Pain Phys 12(3):541–559Google Scholar
  5. 5.
    Wolfer LR, Derby R, Lee JE, Lee SH (2008) Systematic review of lumbar provocation discography in asymptomatic subjects with a meta-analysis of false-positive rates. Pain Phys 11(4):513–538Google Scholar
  6. 6.
    Datta S, Lee M, Falco FJ, Bryce DA, Hayek SM (2009) Systematic assessment of diagnostic accuracy and therapeutic utility of lumbar facet joint interventions. Pain Phys 12(2):437–460Google Scholar
  7. 7.
    Manchukonda R, Manchikanti KN, Cash KA, Pampati V, Manchikanti L (2007) Facet joint pain in chronic spinal pain: an evaluation of prevalence and false-positive rate of diagnostic blocks. J Spinal Disord Tech 20(7):539–545. doi: 10.1097/BSD.0b013e3180577812 CrossRefPubMedGoogle Scholar
  8. 8.
    Konnai Y, Honda T, Sekiguchi Y, Kikuchi S, Sugiura Y (2000) Sensory innervation of the lumbar dura mater passing through the sympathetic trunk in rats. Spine 25(7):776–782CrossRefPubMedGoogle Scholar
  9. 9.
    Igarashi A, Kikuchi S, Konno S, Olmarker K (2004) Inflammatory cytokines released from the facet joint tissue in degenerative lumbar spinal disorders. Spine (Phila Pa 1976) 29(19):2091–2095CrossRefGoogle Scholar
  10. 10.
    Goode AP, Carey TS, Jordan JM (2013) Low back pain and lumbar spine osteoarthritis: how are they related?. Curr Rheumatol Rep 15(2):305. doi: 10.1007/s11926-012-0305-z CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gawri R, Rosenzweig DH, Krock E, Ouellet JA, Stone LS, Quinn TM, Haglund L (2014) High mechanical strain of primary intervertebral disc cells promotes secretion of inflammatory factors associated with disc degeneration and pain. Arthritis Res Ther 16(1):R21. doi: 10.1186/ar4449 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Saleem S, Aslam HM, Rehmani MA, Raees A, Alvi AA, Ashraf J (2013) Lumbar disc degenerative disease: disc degeneration symptoms and magnetic resonance image findings. Asian Spine J 7(4):322–334. doi: 10.4184/asj.2013.7.4.322 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gallagher S, Marras WS (2012) Tolerance of the lumbar spine to shear: a review and recommended exposure limits. Clin Biomech (Bristol, Avon) 27(10):973–978. doi: 10.1016/j.clinbiomech.2012.08.009 CrossRefGoogle Scholar
  14. 14.
    Stanton TR, Latimer J, Maher CG, Hancock MJ (2010) How do we define the condition ‘recurrent low back pain’? A systematic review. Euro Spine J 19(4):533–539. doi: 10.1007/s00586-009-1214-3 CrossRefGoogle Scholar
  15. 15.
    Haddas R, Sawyer SF, Sizer PS Jr, Brooks T, Chyu MC, James CR (2016) Effects of volitional spine stabilization and lower extremity fatigue on trunk control during landing in individuals with recurrent low back pain. J Orthop Sports Phys Ther 46(2):71–78. doi: 10.2519/jospt.2016.6048 CrossRefPubMedGoogle Scholar
  16. 16.
    Haddas R, Hooper LT, James CR, Sizer PS (2016) Effects of volitional preemptive abdominal contraction on trunk and lower extremity biomechanics and neuromuscular control during a drop vertical jump. J Athl Train (in press) Google Scholar
  17. 17.
    Haddas R, James CR, Hooper TL (2015) Lower extremity fatigue, sex, and landing performance in a population with recurrent low back pain. J Athl Train 50(4):378–384. doi: 10.4085/1062-6050-49.3.61 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Haddas R, Yang J (2015) Sizer P (2015) Effects of gender and recurrent low back pain on lifting style. Central Eur J Sport Sci Med 11(3):15–28CrossRefGoogle Scholar
  19. 19.
    Ulrey BL, Fathallah FA (2013) Effect of a personal weight transfer device on muscle activities and joint flexions in the stooped posture. J Electromyogr Kinesiol 23(1):195–205. doi: 10.1016/j.jelekin.2012.08.014 CrossRefPubMedGoogle Scholar
  20. 20.
    Gallagher S, Pollard J, Porter WL (2011) Electromyography of the thigh muscles during lifting tasks in kneeling and squatting postures. Ergonomics 54(1):91–102. doi: 10.1080/00140139.2010.535025 CrossRefPubMedGoogle Scholar
  21. 21.
    Karahan A, Kav S, Abbasoglu A, Dogan N (2009) Low back pain: prevalence and associated risk factors among hospital staff. J Adv Nurs 65(3):516–524CrossRefPubMedGoogle Scholar
  22. 22.
    Theilmeier A, Jordan C, Luttmann A, Jager M (2010) Measurement of action forces and posture to determine the lumbar load of healthcare workers during care activities with patient transfers. Ann Occup Hyg 54(8):923–933. doi: 10.1093/annhyg/meq063 CrossRefPubMedGoogle Scholar
  23. 23.
    Pal P, Milosavljevic S, Gregory DE, Carman AB, Callaghan JP (2010) The influence of skill and low back pain on trunk postures and low back loads of shearers. Ergonomics 53(1):65–67CrossRefPubMedGoogle Scholar
  24. 24.
    Ropponen A, Silventoinen K, Svedberg P (2012) Effects of work and lifestyle on risk for future disability pension due to low back diagnoses: a 30-year prospective study of Finnish twins. J Occup Environ Med 54(11):1330–1336CrossRefPubMedGoogle Scholar
  25. 25.
    Alderson J, Hopper L, Elliott B, Ackland T (2009) Risk factors for lower back injury in male dancers performing ballet lifts. J Dance Med Sci 13(3):83–89PubMedGoogle Scholar
  26. 26.
    Maduri A, Pearson BL, Wilson SE (2008) Lumbar-pelvic range and coordination during lifting tasks. J Electromyogr Kinesiol 18(5):807–814. doi: 10.1016/j.jelekin.2007.02.012 CrossRefPubMedGoogle Scholar
  27. 27.
    Arjmand N, Gagnon D, Plamondon A, Shirazi-Adl A, Lariviere C (2009) Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models. Clin Biomech 24(7):533–541. doi: 10.1016/j.clinbiomech.2009.05.008 CrossRefGoogle Scholar
  28. 28.
    Panjabi MM (2003) Clinical spinal instability and low back pain. J Electromyogr Kinesiol 13(4):371–379CrossRefPubMedGoogle Scholar
  29. 29.
    Richardson C, Hodges P, Hides J (2004) Therapeutic exercise for lumbopelvic stabilization: a motor control approach for the treatment and prevention of low back pain. Churchill Livingstone, LondonGoogle Scholar
  30. 30.
    Nagar VR, Hooper TL, Dedrick GS, Brismee JM, Sizer PS Jr (2014) Effect of recurrent low back pain history on volitional pre-emptive abdominal activation during a loaded functional reach activity. SpineSpine (Phila Pa 1976) 39(2):E89–E96. doi: 10.1097/BRS.0000000000000091 CrossRefGoogle Scholar
  31. 31.
    Mcgill S (2010) Core training: evidence translating to better performance and injury prevention. Strength Cond J 32:33–46CrossRefGoogle Scholar
  32. 32.
    Haddas R, Sawyer S, Sizer P, Brooks T, Chyu M, James CR (2016) Effects of volitional spine stabilization and lower extremity fatigue on trunk control during landing in individuals with recurrent low back pain. J Orthop Sports Phys Ther 46(2):71–78CrossRefPubMedGoogle Scholar
  33. 33.
    Iida Y, Kanehisa H, Inaba Y, Nakazawa K (2011) Activity modulations of trunk and lower limb muscles during impact-absorbing landing. J Electromyogr Kinesiol 21(4):602–609. doi: 10.1016/j.jelekin.2011.04.001 CrossRefPubMedGoogle Scholar
  34. 34.
    Hall L, Tsao H, MacDonald D, Coppieters M, Hodges PW (2009) Immediate effects of co-contraction training on motor control of the trunk muscles in people with recurrent low back pain. J Electromyogr Kinesiol 19(5):763–773. doi: 10.1016/j.jelekin.2007.09.008 CrossRefPubMedGoogle Scholar
  35. 35.
    Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J (2007) Deficits in neuromuscular control of the trunk predict knee injury risk: a prospective biomechanical-epidemiologic study. Am J Sports Med 35(7):1123–1130. doi: 10.1177/0363546507301585 CrossRefPubMedGoogle Scholar
  36. 36.
    Portney LG, Watkins MP (2009) Foundation of clinical research: applications to practice. Julie Levin Alexander, New JersyGoogle Scholar
  37. 37.
    MacDonald D, Moseley GL, Hodges PW (2010) People with recurrent low back pain respond differently to trunk loading despite remission from symptoms. Spine (Phila Pa 1976) 35(7):818–824. doi: 10.1097/BRS.0b013e3181bc98f1 CrossRefGoogle Scholar
  38. 38.
    Barbero M, Merletti R, Rainoldi A (2012) Atlas of muscle innervation zones. Springer, MilanCrossRefGoogle Scholar
  39. 39.
    Glantz SA (2011) Primer of biostatistics. McGraw-Hill, New YorkGoogle Scholar
  40. 40.
    Laird RA, Gilbert J, Kent P, Keating JL (2014) Comparing lumbo-pelvic kinematics in people with and without back pain: a systematic review and meta-analysis. BMC Musculoskelet Disord 15:229. doi: 10.1186/1471-2474-15-229 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Van-Dillen LR, Bloom NJ, Gombatto SP, Susco TM (2008) Hip rotation range of motion in people with and without low back pain who participate in rotation-related sports. Phys Ther Sport 9(2):72–81CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Shum GL, Crosbie J, Lee RY (2005) Effect of low back pain on the kinematics and joint coordination of the lumbar spine and hip during sit-to-stand and stand-to-sit. Spine (Phila Pa 1976) 30(17):1998–2004CrossRefGoogle Scholar
  43. 43.
    Hammill RR, Beazell JR, Hart JM (2008) Neuromuscular consequences of low back pain and core dysfunction. Clin Sports Med 27(3):449–462. doi: 10.1016/j.csm.2008.02.005 CrossRefPubMedGoogle Scholar
  44. 44.
    Oh JS, Cynn HS, Won JH, Kwon OY, Yi CH (2007) Effects of performing an abdominal drawing-in maneuver during prone hip extension exercises on hip and back extensor muscle activity and amount of anterior pelvic tilt. J Orthop Sports Phys Ther 37(6):320–324CrossRefPubMedGoogle Scholar
  45. 45.
    Wang R, Gutierrez-Farewik EM (2014) Compensatory strategies during walking in response to excessive muscle co-contraction at the ankle joint. Gait Posture 39(3):926–932. doi: 10.1016/j.gaitpost.2013.12.002 CrossRefPubMedGoogle Scholar
  46. 46.
    Miura A, Kudo K, Ohtsuki T, Kanehisa H, Nakazawa K (2013) Relationship between muscle cocontraction and proficiency in whole-body sensorimotor synchronization: a comparison study of street dancers and nondancers. Mot Control 17(1):18–33CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Texas Back Institute Research FoundationPlanoUSA
  2. 2.Mechanical EngineeringTexas Tech UniversityLubbockUSA
  3. 3.Texas Back InstitutePlanoUSA

Personalised recommendations