Advertisement

European Spine Journal

, Volume 25, Issue 9, pp 2691–2704 | Cite as

Distinguishing characteristics of stem cells derived from different anatomical regions of human degenerated intervertebral discs

  • Hai Wang
  • Yue Zhou
  • Tong-Wei Chu
  • Chang-Qing Li
  • Jian Wang
  • Zheng-Feng Zhang
  • Bo HuangEmail author
Original Article

Abstract

Introduction

Several types of stem cells have been successfully demonstrated to exist in the human degenerated intervertebral disc (IVD), which is composed of annulus fibrosus (AF), nucleus pulposus (NP) and cartilage endplate (CEP). However, the differences in the biological characteristics among these and bone marrow derived mesenchymal stem cells (BM-MSCs) remain unclear.

Materials and methods

To investigate this issue, cells were harvested from human AF, NP, CEP, and bone marrow, respectively; passage 2 cells were selected using the agarose suspension culture system to obtain stem cell clones. Following expansion in vitro, stem cells from different anatomical regions were compared regarding the morphology, proliferation ability, immunophenotypic expression, and multi-lineage differentiation capacity. In addition, stem cell-alginate bead compositions were constructed for the comparison of DNA and sGAG content.

Results

There were subtle differences regarding cell morphology, but no significant differences in proliferation ability among the four types of stem cells. For the immunophenotypic analysis, all stem cells basically fulfilled the criteria for mesenchymal stem cells (MSCs), which have been published by the International Society for Cellular Therapy (ISCT), with a significant difference in CD105 expression. A comparison of the osteogenic capacities indicated: cartilage endplate-derived stem cells (CESCs) > annulus fibrosus-derived stem cells (AFSCs) > BM-MSCs > nucleus pulposus-derived stem cells (NPSCs). The chondrogenesis difference was similar to osteogenesis. For adipogenesis: BM-MSCs >NPSCs >CESCs >AFSCs. In the stem cell/alginate composition, the CESCs consistently showed the superior chondrogenic potential among all those cell types.

Conclusions

Our data indicated that all the four types of stem cells shared some similar biological properties (regarding shape, proliferation ability and immunophenotypic expression). CESCs, which had the strongest osteogenic and chondrogenic potentials, may serve as excellent seed cells for NP/cartilage or bone tissue engineering.

Keywords

Tissue-specific stem cells Comparison Intervertebral disc Biological characteristics 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) (No. 81101364 and No. 81572186).

Compliance with ethical standards

Conflict of interest

None.

References

  1. 1.
    Humzah MD, Soames RW (1988) Human intervertebral disc: structure and function. Anat Rec 220:337–356CrossRefPubMedGoogle Scholar
  2. 2.
    Culav EM, Clark CH, Merrilees MJ (1999) Connective tissues: matrix composition and its relevance to physical therapy. Phys Ther 79:308–319PubMedGoogle Scholar
  3. 3.
    Schollmeier G, Lahr-Eigen R, Lewandrowski KU (2000) Observations on fiber-forming collagens in the anulus fibrosus. Spine (Phila Pa 1976) 25:2736–2741CrossRefGoogle Scholar
  4. 4.
    Antoniou J, Goudsouzian NM, Heathfield TF, Winterbottom N, Steffen T, Poole AR (1996) The human lumbar endplate. Evidence of changes in biosynthesis and denaturation of the extracellular matrix with growth, maturation, aging, and degeneration. Spine (Phila Pa 1976) 21:1153–1161CrossRefGoogle Scholar
  5. 5.
    Wognum S, Huyghe JM, Baaijens FP (2006) Influence of osmotic pressure changes on the opening of existing cracks in 2 intervertebral disc models. Spine 31:1783–1788CrossRefPubMedGoogle Scholar
  6. 6.
    Drazin D, Rosner J, Avalos P, Acosta F (2012) Stem cell therapy for degenerative disc disease. Adv Orthop 2012:961052CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Raj PP (2008) Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain Practice 8:18–44CrossRefPubMedGoogle Scholar
  8. 8.
    Goupille P, Jayson MI, Valat JP, Freemont AJ (1998) Matrix metalloproteinases: the clue to intervertebral disc degeneration? Spine (Phila Pa 1976) 23:1612–1626CrossRefGoogle Scholar
  9. 9.
    Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA (1996) The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 98:996–1003CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Pountos I, Giannoudis PV (2005) Biology of mesenchymal stem cells. Injury 36(Suppl 3):S8–S12CrossRefPubMedGoogle Scholar
  11. 11.
    da Silva MR, Domingues CJ, Pinto RP, Neves N, Matos RM, Tulha JM (2009) New perspectives on degenerative disease treatment. Acta Reumatol Port 34:327–335PubMedGoogle Scholar
  12. 12.
    Satomura K, Krebsbach P, Bianco P, Gehron Robey P (2000) Osteogenic imprinting upstream of marrow stromal cell differentiation. J Cell Biochem 78:391–403CrossRefPubMedGoogle Scholar
  13. 13.
    Charbord P, Livne E, Gross G, Haupl T, Neves NM, Marie P (2011) Human bone marrow mesenchymal stem cells: a systematic reappraisal via the genostem experience. Stem Cell Rev 7:32–42CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Risbud MV, Guttapalli A, Tsai TT, Lee JY, Danielson KG, Vaccaro AR (2007) Evidence for skeletal progenitor cells in the degenerate human intervertebral disc. Spine (Phila Pa 1976) 32:2537–2544CrossRefGoogle Scholar
  15. 15.
    Blanco JF, Graciani IF, Sanchez-Guijo FM, Muntion S, Hernandez-Campo P, Santamaria C (2010) Isolation and characterization of mesenchymal stromal cells from human degenerated nucleus pulposus: comparison with bone marrow mesenchymal stromal cells from the same subjects. Spine (Phila Pa 1976) 35:2259–2265CrossRefGoogle Scholar
  16. 16.
    Feng G, Yang X, Shang H, Marks IW, Shen FH, Katz A (2010) Multipotential differentiation of human anulus fibrosus cells: an in vitro study. J Bone Joint Surg Am 92:675–685CrossRefPubMedGoogle Scholar
  17. 17.
    Huang B, Liu LT, Li CQ, Zhuang Y, Luo G, Hu SY (2012) Study to determine the presence of progenitor cells in the degenerated human cartilage endplates. Eur Spine J 21:613–622CrossRefPubMedGoogle Scholar
  18. 18.
    Liu LT, Huang B, Li CQ, Zhuang Y, Wang J, Zhou Y (2011) Characteristics of stem cells derived from the degenerated human intervertebral disc cartilage endplate. PLoS One 6:e26285CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Henriksson H, Thornemo M, Karlsson C, Hagg O, Junevik K, Lindahl A (2009) Identification of cell proliferation zones, progenitor cells and a potential stem cell niche in the intervertebral disc region: a study in four species. Spine (Phila Pa 1976) 34:2278–2287CrossRefGoogle Scholar
  20. 20.
    Brisby H, Papadimitriou N, Brantsing C, Bergh P, Lindahl A, Barreto Henriksson H (2013) The presence of local mesenchymal progenitor cells in human degenerated intervertebral discs and possibilities to influence these in vitro: a descriptive study in humans. Stem Cells Dev 22:804–814CrossRefPubMedGoogle Scholar
  21. 21.
    Turner S, Balain B, Caterson B, Morgan C, Roberts S (2014) Viability, growth kinetics and stem cell markers of single and clustered cells in human intervertebral discs: implications for regenerative therapies. Eur Spine J 23:2462–2472CrossRefPubMedGoogle Scholar
  22. 22.
    Bilic G, Zeisberger SM, Mallik AS, Zimmermann R, Zisch AH (2008) Comparative characterization of cultured human term amnion epithelial and mesenchymal stromal cells for application in cell therapy. Cell Transpl 17:955–968CrossRefGoogle Scholar
  23. 23.
    Lubis AM, Sandhow L, Lubis VK, Noor A, Gumay F, Merlina M (2011) Isolation and cultivation of mesenchymal stem cells from iliac crest bone marrow for further cartilage defect management. Acta Med Indones 43:178–184PubMedGoogle Scholar
  24. 24.
    Thornemo M, Tallheden T, Sjogren Jansson E, Larsson A, Lovstedt K, Nannmark U (2005) Clonal populations of chondrocytes with progenitor properties identified within human articular cartilage. Cells Tissues Organs 180:141–150CrossRefPubMedGoogle Scholar
  25. 25.
    Mochizuki T, Muneta T, Sakaguchi Y, Nimura A, Yokoyama A, Koga H (2006) Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans. Arthritis Rheum 54:843–853CrossRefPubMedGoogle Scholar
  26. 26.
    Jackson WM, Aragon AB, Bulken-Hoover JD, Nesti LJ, Tuan RS (2009) Putative heterotopic ossification progenitor cells derived from traumatized muscle. J Orthop Res 27:1645–1651CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hattori S, Oxford C, Reddi AH (2007) Identification of superficial zone articular chondrocyte stem/progenitor cells. Biochem Biophys Res Commun 358:99–103CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefPubMedGoogle Scholar
  29. 29.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  30. 30.
    Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA (2010) Characterization of the human nucleus pulposus cell phenotype and evaluation of novel marker gene expression to define adult stem cell differentiation. Arthritis Rheum 62:3695–3705CrossRefPubMedGoogle Scholar
  31. 31.
    Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA (2010) Transcriptional profiling of bovine intervertebral disc cells: implications for identification of normal and degenerate human intervertebral disc cell phenotypes. Arthritis Res Ther 12:R22CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kim YJ, Sah RL, Doong JY, Grodzinsky AJ (1988) Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 174:168–176CrossRefPubMedGoogle Scholar
  33. 33.
    Enobakhare BO, Bader DL, Lee DA (1996) Quantification of sulfated glycosaminoglycans in chondrocyte/alginate cultures, by use of 1,9-dimethylmethylene blue. Anal Biochem 243:189–191CrossRefPubMedGoogle Scholar
  34. 34.
    Haudenschild DR, McPherson JM, Tubo R, Binette F (2001) Differential expression of multiple genes during articular chondrocyte redifferentiation. Anat Rec 263:91–98CrossRefPubMedGoogle Scholar
  35. 35.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317CrossRefPubMedGoogle Scholar
  36. 36.
    Conley BA, Koleva R, Smith JD, Kacer D, Zhang D, Bernabeu C (2004) Endoglin controls cell migration and composition of focal adhesions: function of the cytosolic domain. J Biol Chem 279:27440–27449CrossRefPubMedGoogle Scholar
  37. 37.
    Musina RA, Bekchanova ES, Sukhikh GT (2005) Comparison of mesenchymal stem cells obtained from different human tissues. Bull Exp Biol Med 139:504–509CrossRefPubMedGoogle Scholar
  38. 38.
    Sakaguchi Y, Sekiya I, Yagishita K, Muneta T (2005) Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 52:2521–2529CrossRefPubMedGoogle Scholar
  39. 39.
    Sekiya I, Vuoristo JT, Larson BL, Prockop DJ (2002) In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci U S A 99:4397–4402CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wilson M, Koopman P (2002) Matching SOX: partner proteins and co-factors of the SOX family of transcriptional regulators. Curr Opin Genet Dev 12:441–446CrossRefPubMedGoogle Scholar
  41. 41.
    Lefebvre V, Huang W, Harley VR, Goodfellow PN, de Crombrugghe B (1997) SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1 (II) collagen gene. Mol Cell Biol 17:2336–2346CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    de Crombrugghe B, Lefebvre V, Behringer RR, Bi W, Murakami S, Huang W (2000) Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol 19:389–394CrossRefPubMedGoogle Scholar
  43. 43.
    Wang H, Zhou Y, Huang B, Liu LT, Liu MH, Wang J (2014) Utilization of stem cells in alginate for nucleus pulposus tissue engineering. Tissue Eng Part A 20:908–920CrossRefPubMedGoogle Scholar
  44. 44.
    Dawson E, Bernbeck J (1998) The surgical treatment of low back pain. Phys Med Rehabil Clin N Am 9:489–495PubMedGoogle Scholar
  45. 45.
    De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Hai Wang
    • 1
    • 2
  • Yue Zhou
    • 1
  • Tong-Wei Chu
    • 1
  • Chang-Qing Li
    • 1
  • Jian Wang
    • 1
  • Zheng-Feng Zhang
    • 1
  • Bo Huang
    • 1
    Email author
  1. 1.Department of Orthopaedics, Xinqiao HospitalThird Military Medical UniversityChongqingPeople’s Republic of China
  2. 2.Department of OrthopaedicsKunming General Hospital of Chengdu Military CommandKunmingPeople’s Republic of China

Personalised recommendations