European Spine Journal

, Volume 25, Issue 5, pp 1484–1521 | Cite as

Comparison of the safety outcomes between two surgical approaches for anterior lumbar fusion surgery: anterior lumbar interbody fusion (ALIF) and extreme lateral interbody fusion (ELIF)

  • Roger HärtlEmail author
  • Alexander Joeris
  • Robert A. McGuire
Review Article



To review the evidence on safety of anterior lumbar interbody fusion (ALIF) and extreme lateral transpsoas interbody fusion (ELIF) in the treatment of degenerative spinal disorders with an emphasis on the association between neuromonitoring and complications.


We performed a systematic literature search in the Cochrane (CENTRAL), MEDLINE, EMBASE and the FDA Medical Devices databases. We abstracted information on study design, sample size, population, procedure, number and location of involved levels, follow-up time and complications, as well as information on conflict of interest and source of funding. In addition, for ELIF we collected information on the use of neuromonitoring during the procedure.


34 publications were included in the review: 24 ELIF (all case series), 9 ALIF (8 randomized controlled trials and 1 case series) and one retrospective cohort that directly compared ELIF with ALIF. 18 out of 24 ELIF studies reported using neuromonitoring. The overall complication rate for ELIF was lower compared to ALIF without FDA reports (16.61 vs. 26.47 %, respectively). However, the rate of neurologic complications in ELIF was almost twice as high compared to ALIF without FDA reports (8.92 and 4.96 %, respectively). The rate of overall complications in ELIF studies that were reported using neuromonitoring was lower compared to the studies that did not report using neuromonitoring (16.34 vs. 21.74 %, respectively).


Although the overall complications rate for ELIF was lower compared to ALIF, ELIF is associated with a greater risk of neurological complications compared to ALIF even when used with neuromonitoring.


Extreme lateral interbody fusion (ELIF) Extreme lateral interbody fusion (XLIF) Anterior lumbar interbody fusion (ALIF) Lumbar fusion surgery Degenerative disc disease (DDD) 



The presented meta-analysis was performed with the support of the AO Foundation via the AOSpine TK Grant.

Compliance with ethical standards

Conflict of interest

R. Hartl and R. McGuire do not have a financial relationship with the sponsoring organization and they have full control of all primary data and agree to allow the journal to review the data if requested. A. Joeris is an employee of the AO Foundation but his salary does not depend on the publication of this article nor does he have any other benefits by its publication. A. Joeris has full control of all primary data and also agrees to allow the journal to review the data if requested.

Supplementary material

586_2016_4407_MOESM1_ESM.pdf (22 kb)
Supplementary material 1 (PDF 21 kb)
586_2016_4407_MOESM2_ESM.pdf (20 kb)
Supplementary material 2 (PDF 20 kb)


  1. 1.
    Tay BB, Berven S (2002) Indications, techniques, and complications of lumbar interbody fusion. Semin Neurol 22:221–230. doi: 10.1055/s-2002-36545 CrossRefPubMedGoogle Scholar
  2. 2.
    Cloward RB (1985) Posterior lumbar interbody fusion updated. Clin Orthop Relat Res 193:16–19PubMedGoogle Scholar
  3. 3.
    Harms JG, Jeszenszky D (1998) The unilateral, transforaminal approach for posterior lumbar interbody fusion. Orthop Traumatol 6:88–99Google Scholar
  4. 4.
    Deyo RA, Cherkin DC, Loeser JD, Bigos SJ, Ciol MA (1992) Morbidity and mortality in association with operations on the lumbar spine. The influence of age, diagnosis, and procedure. J Bone Joint Surg Am 74:536–543PubMedGoogle Scholar
  5. 5.
    Deyo RA, Ciol MA, Cherkin DC, Loeser JD, Bigos SJ (1993) Lumbar spinal fusion. A cohort study of complications, reoperations, and resource use in the medicare population. Spine (Phila Pa 1976) 18:1463–1470CrossRefGoogle Scholar
  6. 6.
    Okuda S, Miyauchi A, Oda T, Haku T, Yamamoto T, Iwasaki M (2006) Surgical complications of posterior lumbar interbody fusion with total facetectomy in 251 patients. J Neurosurg Spine 4:304–309. doi: 10.3171/spi.2006.4.4.304 CrossRefPubMedGoogle Scholar
  7. 7.
    Sasso RC, Best NM, Mummaneni PV, Reilly TM, Hussain SM (2005) Analysis of operative complications in a series of 471 anterior lumbar interbody fusion procedures. Spine (Phila Pa 1976) 30:670–674CrossRefGoogle Scholar
  8. 8.
    Park Y, Ha JW (2007) Comparison of one-level posterior lumbar interbody fusion performed with a minimally invasive approach or a traditional open approach. Spine (Phila Pa 1976) 32:537–543. doi: 10.1097/01.brs.0000256473.49791.f4 CrossRefGoogle Scholar
  9. 9.
    Salerni AA (2002) A minimally invasive approach for posterior lumbar interbody fusion. Neurosurg Focus 13:e6PubMedGoogle Scholar
  10. 10.
    Pimenta L (2001) Lateral endoscopic transpsoas retroperitoneal approach for lumbar spine surgery. In: VIII Brazilian Spine Society Meeting. Belo Horizonte, Minas Gerais, BrazilGoogle Scholar
  11. 11.
    Pimenta L (2010) The use of rh-BMP2 in standalone eXtreme Lateral Interbody Fusion (XLIF®): clinical and radiological results after 24 months follow-up. World Spinal Column J 1:19–25Google Scholar
  12. 12.
    Ozgur BM, Aryan HE, Pimenta L, Taylor WR (2006) Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J 6:435–443. doi: 10.1016/j.spinee.2005.08.012 CrossRefPubMedGoogle Scholar
  13. 13.
    Rodgers WB, Cox CS, Gerber EJ (2007) Experience and early results with a minimally invasive technique for anterior column support through extreme lateral interbody fusion (XLIF®). US Musculoskelet Rev 1:28–32Google Scholar
  14. 14.
    Benglis DM, Vanni S, Levi AD (2009) An anatomical study of the lumbosacral plexus as related to the minimally invasive transpsoas approach to the lumbar spine. J Neurosurg Spine 10:139–144. doi: 10.3171/2008.10.spi08479 CrossRefPubMedGoogle Scholar
  15. 15.
    Kepler CK, Bogner EA, Herzog RJ, Huang RC (2011) Anatomy of the psoas muscle and lumbar plexus with respect to the surgical approach for lateral transpsoas interbody fusion. Eur Spine J 20:550–556. doi: 10.1007/s00586-010-1593-5 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Billinghurst J, Akbarnia BA (2009) Extreme lateral interbody fusion—XLIF. Current Orthop Pract 20:238–251CrossRefGoogle Scholar
  17. 17.
    Knight RQ, Schwaegler P, Hanscom D, Roh J (2009) Direct lateral lumbar interbody fusion for degenerative conditions: early complication profile. J Spinal Disord Tech 22:34–37. doi: 10.1097/BSD.0b013e3181679b8a CrossRefPubMedGoogle Scholar
  18. 18.
    Tohmeh AG, Rodgers WB, Peterson MD (2011) Dynamically evoked, discrete-threshold electromyography in the extreme lateral interbody fusion approach. J Neurosurg Spine 14:31–37. doi: 10.3171/2010.9.spine09871 CrossRefPubMedGoogle Scholar
  19. 19.
    Arnold PM, Anderson KK, McGuire RA Jr (2012) The lateral transpsoas approach to the lumbar and thoracic spine: a review. Surg Neurol Int 3:S198–S215. doi: 10.4103/2152-7806.98583 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Murata Y, Takahashi K, Yamagata M, Shimada Y, Moriya H (2000) The anatomy of the lateral femoral cutaneous nerve, with special reference to the harvesting of iliac bone graft. J Bone Joint Surg Am 82:746–747PubMedGoogle Scholar
  21. 21.
    Aryan HE, Newman CB, Gold JJ, Acosta FL Jr, Coover C, Ames CP (2008) Percutaneous axial lumbar interbody fusion (AxiaLIF) of the L5–S1 segment: initial clinical and radiographic experience. Minim Invasive Neurosurg 51:225–230. doi: 10.1055/s-2008-1080915 CrossRefPubMedGoogle Scholar
  22. 22.
    Berjano P, Balsano M, Buric J, Petruzzi M, Lamartina C (2012) Direct lateral access lumbar and thoracolumbar fusion: preliminary results. Eur Spine J 21(Suppl 1):S37–S42. doi: 10.1007/s00586-012-2217-z CrossRefPubMedGoogle Scholar
  23. 23.
    Cahill KS, Martinez JL, Wang MY, Vanni S, Levi AD (2012) Motor nerve injuries following the minimally invasive lateral transpsoas approach. J Neurosurg Spine 17:227–231. doi: 10.3171/2012.5.spine1288 CrossRefPubMedGoogle Scholar
  24. 24.
    Cummock MD, Vanni S, Levi AD, Yu Y, Wang MY (2011) An analysis of postoperative thigh symptoms after minimally invasive transpsoas lumbar interbody fusion. J Neurosurg Spine 15:11–18. doi: 10.3171/2011.2.spine10374 CrossRefPubMedGoogle Scholar
  25. 25.
    Johnson RD, Valore A, Villaminar A, Comisso M, Balsano M (2013) Pelvic parameters of sagittal balance in extreme lateral interbody fusion for degenerative lumbar disc disease. J Clin Neurosci 20:576–581. doi: 10.1016/j.jocn.2012.05.032 CrossRefPubMedGoogle Scholar
  26. 26.
    Karikari IO, Grossi PM, Nimjee SM, Hardin C, Hodges TR, Hughes BD, Brown CR, Isaacs RE (2011) Minimally invasive lumbar interbody fusion in patients older than 70 years of age: analysis of peri- and postoperative complications. Neurosurgery 68:897–902. doi: 10.1227/NEU.0b013e3182098bfa (discussion 902) CrossRefPubMedGoogle Scholar
  27. 27.
    Le TV, Smith DA, Greenberg MS, Dakwar E, Baaj AA, Uribe JS (2012) Complications of lateral plating in the minimally invasive lateral transpsoas approach. J Neurosurg Spine 16:302–307. doi: 10.3171/2011.11.spine11653 CrossRefPubMedGoogle Scholar
  28. 28.
    Malham GM, Ellis NJ, Parker RM, Seex KA (2012) Clinical outcome and fusion rates after the first 30 extreme lateral interbody fusions. Sci World J 2012:246989. doi: 10.1100/2012/246989 CrossRefGoogle Scholar
  29. 29.
    Oliveira L, Marchi L, Coutinho E, Pimenta L (2010) A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine (Phila Pa 1976) 35:S331–S337. doi: 10.1097/BRS.0b013e3182022db0 CrossRefGoogle Scholar
  30. 30.
    Ozgur BM, Agarwal V, Nail E, Pimenta L (2010) Two-year clinical and radiographic success of minimally invasive lateral transpsoas approach for the treatment of degenerative lumbar conditions. SAS J 4:41–46CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Papanastassiou ID, Eleraky M, Vrionis FD (2011) Contralateral femoral nerve compression: an unrecognized complication after extreme lateral interbody fusion (XLIF). J Clin Neurosci 18:149–151. doi: 10.1016/j.jocn.2010.07.109 CrossRefPubMedGoogle Scholar
  32. 32.
    Pimenta L, Oliveira L, Schaffa T, Coutinho E, Marchi L (2011) Lumbar total disc replacement from an extreme lateral approach: clinical experience with a minimum of 2 years’ follow-up. J Neurosurg Spine 14:38–45. doi: 10.3171/2010.9.spine09865 CrossRefPubMedGoogle Scholar
  33. 33.
    Rodgers WB, Cox CS, Gerber EJ (2009) Minimally invasive treatment (XLIF) of adjacent segment disease after prior lumbar fusions. Int J Minim Invasive Spinal Technol 3:1–7Google Scholar
  34. 34.
    Rodgers WB, Cox CS, Gerber EJ (2010) Early complications of extreme lateral interbody fusion in the obese. J Spinal Disord Tech 23:393–397. doi: 10.1097/BSD.0b013e3181b31729 CrossRefPubMedGoogle Scholar
  35. 35.
    Rodgers WB, Gerber EJ, Patterson J (2011) Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine (Phila Pa 1976) 36:26–32. doi: 10.1097/BRS.0b013e3181e1040a CrossRefGoogle Scholar
  36. 36.
    Rodgers WB, Gerber EJ, Rodgers JA (2010) Lumbar fusion in octogenarians: the promise of minimally invasive surgery. Spine (Phila Pa 1976) 35:S355–S360. doi: 10.1097/BRS.0b013e3182023796 CrossRefGoogle Scholar
  37. 37.
    Rodgers WB, Lehmen JA, Gerber EJ, Rodgers JA (2012) Grade 2 spondylolisthesis at L4-5 treated by XLIF: safety and midterm results in the “worst case scenario”. Sci World J 2012:356712. doi: 10.1100/2012/356712 CrossRefGoogle Scholar
  38. 38.
    Sharma AK, Kepler CK, Girardi FP, Cammisa FP, Huang RC, Sama AA (2011) Lateral lumbar interbody fusion: clinical and radiographic outcomes at 1 year: a preliminary report. J Spinal Disord Tech 24:242–250. doi: 10.1097/BSD.0b013e3181ecf995 CrossRefPubMedGoogle Scholar
  39. 39.
    Tohmeh AG, Watson B, Tohmeh M, Zielinski XJ (2012) Allograft cellular bone matrix in extreme lateral interbody fusion: preliminary radiographic and clinical outcomes. Sci World J 2012:263637. doi: 10.1100/2012/263637 CrossRefGoogle Scholar
  40. 40.
    Blumenthal S, McAfee PC, Guyer RD, Hochschuler SH, Geisler FH, Holt RT, Garcia R Jr, Regan JJ, Ohnmeiss DD (2005) A prospective, randomized, multicenter food and drug administration investigational device exemptions study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: part I: evaluation of clinical outcomes. Spine (Phila Pa 1976) 30:1565–1575 (discussion E1387-1591) CrossRefGoogle Scholar
  41. 41.
    Food and Drug Administration (2004) CHARITÉ™ Artificial Disc-P040006; Summary of safety and effectiveness data. Accessed Mar 2015
  42. 42.
    Guyer RD, McAfee PC, Banco RJ, Bitan FD, Cappuccino A, Geisler FH, Hochschuler SH, Holt RT, Jenis LG, Majd ME, Regan JJ, Tromanhauser SG, Wong DC, Blumenthal SL (2009) Prospective, randomized, multicenter food and drug administration investigational device exemption study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: five-year follow-up. Spine J 9:374–386. doi: 10.1016/j.spinee.2008.08.007 CrossRefPubMedGoogle Scholar
  43. 43.
    Li J, Dumonski ML, Liu Q, Lipman A, Hong J, Yang N, Jin Z, Ren Y, Limthongkul W, Bessey JT, Thalgott J, Gebauer G, Albert TJ, Vaccaro AR (2010) A multicenter study to evaluate the safety and efficacy of a stand-alone anterior carbon I/F Cage for anterior lumbar interbody fusion: two-year results from a Food and Drug Administration investigational device exemption clinical trial. Spine (Phila Pa 1976) 35:E1564–E1570. doi: 10.1097/BRS.0b013e3181ef5c14 CrossRefGoogle Scholar
  44. 44.
    Zigler J, Delamarter R, Spivak JM, Linovitz RJ, Danielson GO 3rd, Haider TT, Cammisa F, Zuchermann J, Balderston R, Kitchel S, Foley K, Watkins R, Bradford D, Yue J, Yuan H, Herkowitz H, Geiger D, Bendo J, Peppers T, Sachs B, Girardi F, Kropf M, Goldstein J (2007) Results of the prospective, randomized, multicenter food and drug administration investigational device exemption study of the ProDisc-L total disc replacement versus circumferential fusion for the treatment of 1-level degenerative disc disease. Spine (Phila Pa 1976) 32:1155–1162. doi: 10.1097/BRS.0b013e318054e377 (discussion 1163) CrossRefGoogle Scholar
  45. 45.
    Delamarter R, Zigler JE, Balderston RA, Cammisa FP, Goldstein JA, Spivak JM (2011) Prospective, randomized, multicenter food and drug administration investigational device exemption study of the ProDisc-L total disc replacement compared with circumferential arthrodesis for the treatment of two-level lumbar degenerative disc disease: results at twenty-four months. J Bone Joint Surg Am 93:705–715. doi: 10.2106/jbjs.i.00680 CrossRefPubMedGoogle Scholar
  46. 46.
    Food and Drug Administration (2006) PRODISC®-L Total Disc Replacement P050010: Summary of safety and effectiveness data. Accessed Mar 2015
  47. 47.
    Food and Drug Administration (1999) INTER FIX Threaded Fusion Device P970015: Summary of safety and effectiveness dataGoogle Scholar
  48. 48.
    Food and Drug Administration (2002) InFUSE™ Bone Graft/LT-CAGE™ Lumbar Tapered Fusion Device P000058: Summary of safety and effectiveness data;. Accessed Mar 2015
  49. 49.
    Smith WD, Christian G, Serrano S, Malone KT (2012) A comparison of perioperative charges and outcome between open and mini-open approaches for anterior lumbar discectomy and fusion. J Clin Neurosci 19:673–680. doi: 10.1016/j.jocn.2011.09.010 CrossRefPubMedGoogle Scholar
  50. 50.
    Youssef JA, McAfee PC, Patty CA, Raley E, DeBauche S, Shucosky E, Chotikul L (2010) Minimally invasive surgery: lateral approach interbody fusion: results and review. Spine (Phila Pa 1976) 35:S302–S311. doi: 10.1097/BRS.0b013e3182023438 CrossRefGoogle Scholar
  51. 51.
    Geisler FH, Blumenthal SL, Guyer RD, McAfee PC, Regan JJ, Johnson JP, Mullin B (2004) Neurological complications of lumbar artificial disc replacement and comparison of clinical results with those related to lumbar arthrodesis in the literature: results of a multicenter, prospective, randomized investigational device exemption study of Charite intervertebral disc. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2004. J Neurosurg Spine 1:143–154. doi: 10.3171/spi.2004.1.2.0143 CrossRefPubMedGoogle Scholar
  52. 52.
    Dakwar E, Cardona RF, Smith DA, Uribe JS (2010) Early outcomes and safety of the minimally invasive, lateral retroperitoneal transpsoas approach for adult degenerative scoliosis. Neurosurg Focus 28:E8. doi: 10.3171/2010.1.focus09282 CrossRefPubMedGoogle Scholar
  53. 53.
    Moller DJ, Slimack NP, Acosta FL Jr, Koski TR, Fessler RG, Liu JC (2011) Minimally invasive lateral lumbar interbody fusion and transpsoas approach-related morbidity. Neurosurg Focus 31:E4. doi: 10.3171/2011.7.focus11137 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Roger Härtl
    • 1
    Email author
  • Alexander Joeris
    • 2
  • Robert A. McGuire
    • 3
  1. 1.Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medical College, New York-Presbyterian HospitalNew YorkUSA
  2. 2.AO Clinical Investigation and DocumentationDübendorfSwitzerland
  3. 3.Department of Orthopedics and RehabilitationUniversity of Mississippi Medical CenterJacksonUSA

Personalised recommendations