Advertisement

European Spine Journal

, Volume 25, Issue 2, pp 607–613 | Cite as

The influence of brace immobilization on the remodeling potential of thoracolumbar impaction fractures in children and adolescents

  • Georg SingerEmail author
  • Stephan Parzer
  • Christoph Castellani
  • Helmut Wegmann
  • Franz Lindbichler
  • Holger Till
  • Robert Eberl
Original Article

Abstract

Purpose

Different treatment methods including immediate mobilization with or without brace, bed rest or immobilization using thoracolumbosacral orthosis have been applied for stable compression fractures of the pediatric spine. The aim of this study was to evaluate the influence of bracing on the remodeling capacity of pediatric thoracolumbar type A 1.2 impaction fractures. Additionally, the prevalence of pain and functional disabilities were assessed.

Methods

All children treated conservatively between 2000 and 2011 with impaction fractures of the thoracolumbar spine (A 1.2) were included and re-invited for a clinical [including VAS 0–100, Oswestry disability index (ODI)] and radiological follow-up examination. Changes of the sagittal index (SI) at the time of the accident, the latest control visit and at the follow-up examination were analyzed.

Results

Seventy-two patients with a mean age of 12 years (1.8–18 years) and a total number of 133 fractured vertebrae were included. The mean SI at the time of injury was 0.76 (range 0.45–0.94, SD 0.08); 34 patients with 67 fractured vertebrae were included in the follow-up examination after a mean of 7.9 years (2.4–13.1 years). The mean SI of the 67 affected vertebrae at follow-up significantly increased to 0.92 (range 0.74–1, SD 0.06). The initial treatment regimen (brace vs no brace) did not influence the remodeling capacity. More than half of the patients (n = 18, 53 %) complained about occasional back-related pain which was not associated with the remodeling process. The mean ODI was 5.8 (range 0–26, SD 6.6) and the mean VAS of the re-evaluated patients was 87 (range 53–100, SD 14).

Conclusions

A significant remodeling capacity of thoracolumbar vertebral impaction fractures sustained in childhood is demonstrated. Bracing does not seem to influence the long-term outcome of these injuries. More studies have to be performed to define the role of bracing in these fractures.

Keywords

Impaction fracture Spine Children Outcome Remodeling 

Notes

Compliance with ethical standards

Conflict of interest

None.

References

  1. 1.
    Daniels AH, Sobel AD, Eberson CP (2013) Pediatric thoracolumbar spine trauma. J Am Acad Orthop Surg 21(12):707–716. doi: 10.5435/JAAOS-21-12-707 PubMedCrossRefGoogle Scholar
  2. 2.
    Schalamon J, Dampf S, Singer G, Ainoedhofer H, Petnehazy T, Hoellwarth ME, Saxena AK (2011) Evaluation of fractures in children and adolescents in a Level I Trauma Center in Austria. J Trauma 71(2):E19–E25. doi: 10.1097/TA.0b013e3181f8a903 PubMedCrossRefGoogle Scholar
  3. 3.
    Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3(4):184–201PubMedCrossRefGoogle Scholar
  4. 4.
    Dogan S, Safavi-Abbasi S, Theodore N, Chang SW, Horn EM, Mariwalla NR, Rekate HL, Sonntag VK (2007) Thoracolumbar and sacral spinal injuries in children and adolescents: a review of 89 cases. J Neurosurg 106(6 Suppl):426–433. doi: 10.3171/ped.2007.106.6.426 PubMedGoogle Scholar
  5. 5.
    Rajasekaran S (2010) Thoracolumbar burst fractures without neurological deficit: the role for conservative treatment. Eur Spine J 19(Suppl 1):S40–S47. doi: 10.1007/s00586-009-1122-6 PubMedCrossRefGoogle Scholar
  6. 6.
    Sawyer JR, Beebe M, Creek AT, Yantis M, Kelly DM, Warner WC Jr (2012) Age-related patterns of spine injury in children involved in all-terrain vehicle accidents. J Pediatr Orthop 32(5):435–439. doi: 10.1097/BPO.0b013e318259f2b9 PubMedCrossRefGoogle Scholar
  7. 7.
    Karlsson MK, Moller A, Hasserius R, Besjakov J, Karlsson C, Ohlin A (2003) A modeling capacity of vertebral fractures exists during growth: an up-to-47-year follow-up. Spine 28(18):2087–2092. doi: 10.1097/01.BRS.0000084680.76654.B1 PubMedCrossRefGoogle Scholar
  8. 8.
    Moller A, Hasserius R, Besjakov J, Ohlin A, Karlsson M (2006) Vertebral fractures in late adolescence: a 27 to 47-year follow-up. Eur Spine J 15(8):1247–1254. doi: 10.1007/s00586-005-0043-2 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Angelliaume A, Bouty A, Sales De Gauzy J, Vital JM, Gille O, Boissiere L, Tournier C, Aunoble S, Pontailler JR, Lefevre Y (2015) Post-trauma scoliosis after conservative treatment of thoracolumbar spinal fracture in children and adolescents: results in 48 patients. Eur Spine J. doi: 10.1007/s00586-014-3744-6 PubMedGoogle Scholar
  10. 10.
    Fairbank JC, Couper J, Davies JB, O’Brien JP (1980) The Oswestry low back pain disability questionnaire. Physiotherapy 66(8):271–273PubMedGoogle Scholar
  11. 11.
    Sayama C, Chen T, Trost G, Jea A (2014) A review of pediatric lumbar spine trauma. Neurosurg Focus 37(1):E6. doi: 10.3171/2014.5.FOCUS1490 PubMedCrossRefGoogle Scholar
  12. 12.
    Santiago R, Guenther E, Carroll K, Junkins EP Jr (2006) The clinical presentation of pediatric thoracolumbar fractures. J Trauma 60(1):187–192. doi: 10.1097/01.ta.0000200852.56822.77 PubMedCrossRefGoogle Scholar
  13. 13.
    Sledge JB, Allred D, Hyman J (2001) Use of magnetic resonance imaging in evaluating injuries to the pediatric thoracolumbar spine. J Pediatr Orthop 21(3):288–293PubMedGoogle Scholar
  14. 14.
    Gaca AM, Barnhart HX, Bisset GS 3rd (2010) Evaluation of wedging of lower thoracic and upper lumbar vertebral bodies in the pediatric population. AJR 194(2):516–520. doi: 10.2214/AJR.09.3065 PubMedCrossRefGoogle Scholar
  15. 15.
    Lefevre Y, Journeau P, Angelliaume A, Bouty A, Dobremez E (2014) Proximal humerus fractures in children and adolescents. OTSR 100(1 Suppl):S149–S156. doi: 10.1016/j.otsr.2013.06.010 PubMedGoogle Scholar
  16. 16.
    Zimmermann R, Gschwentner M, Pechlaner S, Gabl M (2004) Remodeling capacity and functional outcome of palmarly versus dorsally displaced pediatric radius fractures in the distal one-third. Arch Orthop Trauma Surg 124(1):42–48. doi: 10.1007/s00402-003-0552-6 PubMedCrossRefGoogle Scholar
  17. 17.
    Parisini P, Di Silvestre M, Greggi T (2002) Treatment of spinal fractures in children and adolescents: long-term results in 44 patients. Spine 27(18):1989–1994PubMedCrossRefGoogle Scholar
  18. 18.
    Rathleff MS, Roos EM, Olesen JL, Rasmussen S (2013) High prevalence of daily and multi-site pain—a cross-sectional population-based study among 3000 Danish adolescents. BMC pediatrics 13:191. doi: 10.1186/1471-2431-13-191 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Georg Singer
    • 1
    Email author
  • Stephan Parzer
    • 1
  • Christoph Castellani
    • 1
  • Helmut Wegmann
    • 1
  • Franz Lindbichler
    • 2
  • Holger Till
    • 1
  • Robert Eberl
    • 1
  1. 1.Department of Pediatric and Adolescent SurgeryMedical University of GrazGrazAustria
  2. 2.Division of Pediatric Radiology, Department of RadiologyMedical University of GrazGrazAustria

Personalised recommendations