Advertisement

European Spine Journal

, Volume 25, Issue 6, pp 1912–1919 | Cite as

Microendoscopic posterior decompression for the treatment of thoracic myelopathy caused by ossification of the ligamentum flavum: a technical report

  • Satoshi Baba
  • Yasushi Oshima
  • Tomoyuki Iwahori
  • Yuichi Takano
  • Hirohiko Inanami
  • Hisashi Koga
Original Article

Abstract

Purpose

Ossification of the ligamentum flavum (OLF) is a common cause of progressive thoracic myelopathy in East Asia. Good surgical results are expected for patients who already show myelopathy. Surgical decompression using a posterior approach is commonly used to treat OLF. This study investigated the use of microendoscopic posterior decompression for the treatment of thoracic OLF.

Methods

Microendoscopic posterior decompression was performed on 9 patients with myelopathy. Patients had a mean age of 59.8 years and single-level involvement, mostly at the T10–11 and T11–12 vertebrae. Computed tomography and magnetic resonance imaging were used to classify the OLF. A tubular retractor and endoscopic system were used for microendoscopic posterior decompression. Midline and unilateral paramedian approaches were performed in 2 and 7 patients, respectively. Intraoperative motor evoked potentials (MEPs) of 7 patients were monitored. Pre- and postoperative neurological status was evaluated using the modified Japanese Orthopaedic Association (mJOA) score.

Results

Thoracic OLF for all patients were classed as bilateral type with a round morphology. Improvement of MEPs at least one muscle area was recorded in all patients following posterior decompression. A dural tear in one patient was the only observed complication. The mean recovery rate was 44.9 %, as calculated from mJOA scores at a mean follow-up period of 20 months.

Conclusions

Microendoscopic posterior decompression combined with MEP monitoring can be used to treat patients with thoracic OLF. The optimal surgical indication is OLF at a single vertebral level and of a unilateral or bilateral nature, without comma and tram track signs, and a round morphology.

Keywords

Ossification of the ligamentum flavum Thoracic myelopathy Microendoscopic posterior decompression Minimally invasive 

Notes

Acknowledgments

We would like to thank Dr Y Yuzawa (Department of Orthopaedics, Iwai Orthopaedic Medical Hospital) for his input in discussions; and Ms. Omuro and Ms. Fukuda for secretarial assistance. We would also like thank all the operating room staff for their technical assistance, and the medical records clerks who helped to collect patient data. This work was partly supported by a grant from the Iwai Medical Foundation.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

586_2015_4158_MOESM1_ESM.ppt (3.9 mb)
Supplementary material 1 (PPT 4010 kb) Supplemented Fig. 1 Schematic drawings of ossification of the ligamentum flavum (OLF) using axial view on CT scan. The thoracic OLF was classified into 3 types, unilateral (A), bilateral (B), and bridged (C) types. Black area indicates ossified ligamentum flavum. Supplemented Fig. 2 Schematic drawings of ossification of the ligamentum flavum (OLF) using sagittal MRI. The thoracic OLF was classified into 2 types, round (A) or beak (B) types. Black area indicates ossified ligamentum flavum. Supplemented Fig. 3 CT findings which predict dural ossification. A) The “tram track sign,” where there was a hyperdense bony excrescence with a hypodense center. B) The “comma sign,” where there was evidence of ossification of one-half of the circumference of the dura mater

References

  1. 1.
    Toledo JA, Van Isseldyk F, Re M, Garrote M (2013) Ossification of the ligamentum flavum as cause of thoracic cord compression: case report of a Latin American man and review of the literature. Surg Neurol Int 4:119. doi: 10.4103/2152-7806.118489 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ahn DK, Lee S, Moon SH et al (2014) Ossification of the ligamentum flavum. Asian Spine J 8:89–96. doi: 10.4184/asj.2014.8.1.89 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chang UK, Choe WJ, Chung CK, Kim HJ (2001) Original article surgical treatment for thoracic spinal stenosis. Spinal Cord 39:362–369CrossRefPubMedGoogle Scholar
  4. 4.
    Hur H, Lee J-K, Lee J-H et al (2009) Thoracic myelopathy caused by ossification of the ligamentum flavum. J Korean Neurosurg Soc 46:189–194. doi: 10.3340/jkns.2009.46.3.189 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yoon SH, Kim WH, Chung S-B et al (2011) Clinical analysis of thoracic ossified ligamentum flavum without ventral compressive lesion. Eur Spine J 20:216–223. doi: 10.1007/s00586-010-1515-6 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sanghvi AV, Chhabra HS, Mascarenhas Aa et al (2011) Thoracic myelopathy due to ossification of ligamentum flavum: a retrospective analysis of predictors of surgical outcome and factors affecting preoperative neurological status. Eur Spine J 20:205–215. doi: 10.1007/s00586-010-1423-9 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Epstein NE (2013) A review article on the diagnosis and treatment of cerebrospinal fluid fistulas and dural tears occurring during spinal surgery. Surg Neurol Int 4:S301–S317. doi: 10.4103/2152-7806.111427 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Epstein NE (2014) What you need to know about ossification of the posterior longitudinal ligament to optimize cervical spine surgery: a review. Surg Neurol Int 5:S93–S118. doi: 10.4103/2152-7806.130696 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Aizawa T, Sato T, Ozawa H et al (2008) Sagittal alignment changes after thoracic laminectomy in adults. J Neurosurg Spine 8:510–516. doi: 10.3171/SPI/2008/8/6/510 CrossRefPubMedGoogle Scholar
  10. 10.
    Sung UK, Young SK, Yong EC et al (2006) Contributing factors affecting the prognosis surgical outcome for thoracic OLF. Eur Spine J 15:485–491. doi: 10.1007/s00586-005-0903-9 CrossRefGoogle Scholar
  11. 11.
    Aizawa T, Sato T, Sasaki H et al (2006) Thoracic myelopathy caused by ossification of the ligamentum flavum: clinical features and surgical results in the Japanese population. J Neurosurg Spine 5:514–519. doi: 10.3171/spi.2006.5.6.514 CrossRefPubMedGoogle Scholar
  12. 12.
    Ando K, Imagama S, Ito Z et al (2013) Predictive factors for a poor surgical outcome with thoracic ossification of the ligamentum flavum by multivariate analysis: a Multicenter Study. Spine (Phila Pa 1976) 38:748–754. doi: 10.1097/BRS.0b013e31828ff736 CrossRefGoogle Scholar
  13. 13.
    Gao R, Yuan W, Yang L et al (2013) Clinical features and surgical outcomes of patients with thoracic myelopathy caused by multilevel ossification of the ligamentum flavum. Spine J 13:1032–1038. doi: 10.1016/j.spinee.2013.02.034 CrossRefPubMedGoogle Scholar
  14. 14.
    Hirabayashi H, Ebara S, Takahashi J et al (2008) Surgery for thoracic myelopathy caused by ossification of the ligamentum flavum. Surg Neurol 69:114–116. doi: 10.1016/j.surneu.2007.01.045 (discussion 116) CrossRefPubMedGoogle Scholar
  15. 15.
    Kang K-C, Lee C-S, Shin S-K et al (2011) Ossification of the ligamentum flavum of the thoracic spine in the Korean population. J Neurosurg Spine 14:513–519. doi: 10.3171/2010.11.SPINE10405 CrossRefPubMedGoogle Scholar
  16. 16.
    Kawaguchi Y, Yasuda T, Seki S et al (2013) Variables affecting postsurgical prognosis of thoracic myelopathy caused by ossification of the ligamentum flavum. Spine J 13:1095–1107. doi: 10.1016/j.spinee.2013.03.001 CrossRefPubMedGoogle Scholar
  17. 17.
    Li F, Chen Q, Xu K (2006) Surgical treatment of 40 patients with thoracic ossification of the ligamentum flavum. J Neurosurg Spine 4:191–197. doi: 10.3171/spi.2006.4.3.191 CrossRefPubMedGoogle Scholar
  18. 18.
    Matsumoto Y, Harimaya K, Doi T et al (2012) Clinical characteristics and surgical outcome of the symptomatic ossification of ligamentum flavum at the thoracic level with combined lumbar spinal stenosis. Arch Orthop Trauma Surg 132:465–470. doi: 10.1007/s00402-011-1438-7 CrossRefPubMedGoogle Scholar
  19. 19.
    Miyakoshi N, Shimada Y, Suzuki T et al (2003) Factors related to long-term outcome after decompressive surgery for ossification of the ligamentum flavum of the thoracic spine. J Neurosurg 99:251–256PubMedGoogle Scholar
  20. 20.
    Yu S, Wu D, Li F, Hou T (2013) Surgical results and prognostic factors for thoracic myelopathy caused by ossification of ligamentum flavum: posterior surgery by laminectomy. Acta Neurochir (Wien) 155:1169–1177. doi: 10.1007/s00701-013-1694-0 CrossRefGoogle Scholar
  21. 21.
    Muthukumar N (2009) Dural ossification in ossification of the ligamentum flavum: a preliminary report. Spine (Phila Pa 1976) 34:2654–2661. doi: 10.1097/BRS.0b013e3181b541c9 CrossRefGoogle Scholar
  22. 22.
    Khoo LT, Fessler RG (2002) Microendoscopic decompressive laminotomy for the treatment of lumbar stenosis. Neurosurgery 51:S146–S154PubMedGoogle Scholar
  23. 23.
    Perez-Cruet MJ, Foley KT, Isaacs RE et al (2002) Microendoscopic lumbar discectomy: technical note. Neurosurgery 51:S129–S136PubMedGoogle Scholar
  24. 24.
    Foley KT, Smith MM, Rampersaud YR (1999) Microendoscopic approach to far-lateral lumbar disc herniation. Neurosurg Focus 7:e5. doi: 10.3171/foc.1999.7.1.5 CrossRefPubMedGoogle Scholar
  25. 25.
    Ikuta K, Tarukado K, Senba H et al (2011) Decompression procedure using a microendoscopic technique for thoracic myelopathy caused by ossification of the ligamentum flavum. Minim Invasive Neurosurg 54:271–273. doi: 10.1055/s-0031-1297986 CrossRefPubMedGoogle Scholar
  26. 26.
    Wang VY, Kanter AS, Mummaneni PV (2008) Removal of ossified ligamentum flavum via a minimally invasive surgical approach. Neurosurg Focus 25:E7. doi: 10.3171/FOC/2008/25/8/E7 CrossRefPubMedGoogle Scholar
  27. 27.
    Epstein NE (2014) Medicolegal corner: when minimally invasive thoracic surgery leads to paraplegia. Surg Neurol Int 5:S55–S58. doi: 10.4103/2152-7806.130667 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yang J, Huang Z, Shu H et al (2012) Improving successful rate of transcranial electrical motor-evoked potentials monitoring during spinal surgery in young children. Eur Spine J 21:980–984. doi: 10.1007/s00586-011-1995-z CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Stecker MM (2012) A review of intraoperative monitoring for spinal surgery. Surg Neurol Int 3:S174–S187. doi: 10.4103/2152-7806.98579 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Pastorelli F, Di Silvestre M, Plasmati R et al (2011) The prevention of neural complications in the surgical treatment of scoliosis: the role of the neurophysiological intraoperative monitoring. Eur Spine J 20(Suppl 1):S105–S114. doi: 10.1007/s00586-011-1756-z CrossRefPubMedGoogle Scholar
  31. 31.
    Mohindra S, Gupta R, Chhabra R, Gupta SK (2011) Compressive myelopathy due to ossified yellow ligament among South Asians: analysis of surgical outcome. Acta Neurochir (Wien) 153:581–587. doi: 10.1007/s00701-010-0904-2 CrossRefGoogle Scholar
  32. 32.
    Rong L-M, Xie P-G, Shi D-H et al (2008) Spinal surgeons’ learning curve for lumbar microendoscopic discectomy: a prospective study of our first 50 and latest 10 cases. Chin Med J (Engl) 121:2148–2151Google Scholar
  33. 33.
    Martín-Láez R, Martínez-Agüeros JA, Suárez-Fernández D et al (2012) Complications of endoscopic microdiscectomy using the EASYGO! system: is there any difference with conventional discectomy during the learning-curve period? Acta Neurochir (Wien) 154:1023–1032. doi: 10.1007/s00701-012-1321-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Satoshi Baba
    • 1
    • 2
    • 3
  • Yasushi Oshima
    • 1
    • 2
  • Tomoyuki Iwahori
    • 1
  • Yuichi Takano
    • 1
  • Hirohiko Inanami
    • 1
  • Hisashi Koga
    • 1
    • 4
  1. 1.Department of OrthopaedicsIwai Orthopaedic Medical HospitalTokyoJapan
  2. 2.Department of Orthopaedic SurgeryThe University of TokyoTokyoJapan
  3. 3.Department of OrthopaedicsJapan Community Health Care Organization Tokyo Shinjuku Medical CenterTokyoJapan
  4. 4.Department of Minimally Invasive Spinal SurgeryZhangzhou Zhengxing HospitalZhangzhouChina

Personalised recommendations