European Spine Journal

, Volume 24, Issue 11, pp 2567–2572 | Cite as

Clinical and radiographic outcomes of concentrated bone marrow aspirate with allograft and demineralized bone matrix for posterolateral and interbody lumbar fusion in elderly patients

  • Remi M. AjiboyeEmail author
  • Jason T. Hamamoto
  • Mark A. Eckardt
  • Jeffrey C. Wang
Original Article



Cell-based therapies such as concentrated bone marrow aspirate (BMA) with allograft and demineralized bone matrix (DBM) have been developed as a potential alternative to iliac crest bone graft (ICBG) in spinal fusion. BMA contains mesenchymal stem cells (MSCs) and growth factors that confer osteogenic and osteoinductive potential to osteoconductive scaffolds like allograft and DBM. It is well established that there is an age-related decline in bone marrow MSC population and efficacy. This might be problematic in spine arthrodesis when utilizing BMA derived from elderly patients as a fusion aide. The goal of this study was to describe the outcomes of concentrated BMA with allograft and DBM in elderly patients undergoing posterolateral and interbody lumbar fusion.


Thirty-one patients, age 65 and older, with a minimum of 12 months follow-up underwent combined primary posterolateral and transforaminal lumbar interbody fusion. Radiographic fusion, complications, reoperation rates and clinical outcomes were assessed. Multiple logistic regression analysis was used to examine the effects of variables such as patient age, gender, smoking, osteoporosis, Charlson co-morbidity index score, single versus multilevel fusion, length of hospital stay, and length of follow-up time on fusion outcome.


The overall rate of a solid fusion (i.e. the concomitant presence of solid posterolateral and interbody fusion in a patient) was 83.9 % (26/31). Specifically, radiographic evidence of a successful posterolateral fusion was 83.9 % (26/31) while the radiographic evidence of a successful interbody fusion was 96.8 % (30/31). Using logistic regression analysis, none of the variables of interest had an association with non-solid unions. One (3.2 %) patient developed a seroma and one (3.2 %) patient developed clinical pseudarthrosis. None of the patients developed hardware-related complications or graft donor site morbidities. Five (16.1 %) patients required reoperation. Excellent or good results were achieved in 83.9 % of patients.


Despite the concerns of reduced fusion potential in elderly patients, autologous concentrated BMA mixed with allograft and DBM in posterolateral and interbody fusions can achieve successful fusion rates with good clinical outcomes and low complication rates.


Bone marrow aspirate Demineralized bone matrix Allograft Elderly Lumbar fusion 



No funds were received in support of this work.

Compliance with ethical standards

Conflict of interest

No relevant financial disclosures are associated with this work.


  1. 1.
    Okuda S, Oda T, Miyauchi A, Haku T, Yamamoto T, Iwasaki M (2006) Surgical outcomes of posterior lumbar interbody fusion in elderly patients. J Bone Joint Surg Am 88:2714–2720. doi: 10.2106/JBJS.F.00186 CrossRefPubMedGoogle Scholar
  2. 2.
    Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV (2011) Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury 42(Suppl 2):S3–15. doi: 10.1016/j.injury.2011.06.015 CrossRefPubMedGoogle Scholar
  3. 3.
    Khashan M, Inoue S, Berven SH (2013) Cell based therapies as compared to autologous bone grafts for spinal arthrodesis. Spine 38:1885–1891. doi: 10.1097/BRS.0b013e3182a3d7dc CrossRefPubMedGoogle Scholar
  4. 4.
    Marmotti A, de Girolamo L, Bonasia DE, Bruzzone M, Mattia S, Rossi R, Montaruli A, Dettoni F, Castoldi F, Peretti G (2014) Bone marrow derived stem cells in joint and bone diseases: a concise review. DOI, Int Orthop. doi: 10.1007/s00264-014-2445-4 Google Scholar
  5. 5.
    Owen M, Friedenstein AJ (1988) Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 136:42–60PubMedGoogle Scholar
  6. 6.
    Park JJ, Hershman SH, Kim YH (2013) Updates in the use of bone grafts in the lumbar spine. Bull Hosp Jt Dis (2013) 71:39–48Google Scholar
  7. 7.
    Muschler GF, Midura RJ (2002) Connective tissue progenitors: practical concepts for clinical applications. Clin Orthop Relat Res 395:66–80CrossRefPubMedGoogle Scholar
  8. 8.
    Muschler GF, Boehm C, Easley K (1997) Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J Bone Joint Surg Am 79:1699–1709PubMedGoogle Scholar
  9. 9.
    Youssef JA WJ, Lieberman IH et al (2008) Osteoprogenitor-enriched allograft in lumbar spinal fusion: preliminary findings from a two-year prospective multi-center study. In: Paper presented at North American Spine Society 23rd annual meeting pre-course section on spine biologics and research: clinical usage in human papers, Toronto, ONGoogle Scholar
  10. 10.
    Kadiyala S, Kraus K, Attawaia M et al (2003) Rapid bone regeneration in femoral defects by an autologous osteoprogenitor cell concentrate prepared using an intraoperative selective cell retention technique. In: Transactions of the 49th annual meeting of the Orthopaedic Research Society, New Orleans, LAGoogle Scholar
  11. 11.
    Wang JC, Youssef JA, Lieberman IH, Brodke, DS, Haynesworth SE, Lauryssen C, Patel T (2003) Selective Cell retention technology for spinal fusion. In: International meeting on advanced spine techniques, Rome, ItalyGoogle Scholar
  12. 12.
    Muschler GF, Nitto H, Boehm CA, Easley KA (2001) Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res 19:117–125. doi: 10.1016/S0736-0266(00)00010-3 CrossRefPubMedGoogle Scholar
  13. 13.
    Bergman RJ, Gazit D, Kahn AJ, Gruber H, McDougall S, Hahn TJ (1996) Age-related changes in osteogenic stem cells in mice. J Bone Miner Res 11:568–577. doi: 10.1002/jbmr.5650110504 CrossRefPubMedGoogle Scholar
  14. 14.
    Brockbank KG, Ploemacher RE, van Peer CM (1983) An in vitro analysis of murine hemopoietic fibroblastoid progenitors and fibroblastoid cell function during aging. Mech Ageing Dev 22:11–21CrossRefPubMedGoogle Scholar
  15. 15.
    Roholl PJ, Blauw E, Zurcher C, Dormans JA, Theuns HM (1994) Evidence for a diminished maturation of preosteoblasts into osteoblasts during aging in rats: an ultrastructural analysis. J Bone Miner Res 9:355–366. doi: 10.1002/jbmr.5650090310 CrossRefPubMedGoogle Scholar
  16. 16.
    Tsuji T, Hughes FJ, McCulloch CA, Melcher AH (1990) Effects of donor age on osteogenic cells of rat bone marrow in vitro. Mech Ageing Dev 51:121–132CrossRefPubMedGoogle Scholar
  17. 17.
    Stolzing A, Jones E, McGonagle D, Scutt A (2008) Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev 129:163–173. doi: 10.1016/j.mad.2007.12.002 CrossRefPubMedGoogle Scholar
  18. 18.
    Asumda FZ, Chase PB (2011) Age-related changes in rat bone-marrow mesenchymal stem cell plasticity. BMC cell Biol 12:44. doi: 10.1186/1471-2121-12-44 PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Lee K, Goodman SB (2009) Cell therapy for secondary osteonecrosis of the femoral condyles using the Cellect DBM System: a preliminary report. J Arthroplast 24:43–48. doi: 10.1016/j.arth.2008.01.133 CrossRefGoogle Scholar
  20. 20.
    Quan H, Li B, Couris CM, Fushimi K, Graham P, Hider P, Januel JM, Sundararajan V (2011) Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am J Epidemiol 173:676–682. doi: 10.1093/aje/kwq433 CrossRefPubMedGoogle Scholar
  21. 21.
    Kepler CK, Rihn JA, Radcliff KE, Patel AA, Anderson DG, Vaccaro AR, Hilibrand AS, Albert TJ (2012) Restoration of lordosis and disk height after single-level transforaminal lumbar interbody fusion. Orthop Surg 4:15–20. doi: 10.1111/j.1757-7861.2011.00165.x CrossRefPubMedGoogle Scholar
  22. 22.
    Lenke LG, Bridwell KH, Bullis D, Betz RR, Baldus C, Schoenecker PL (1992) Results of in situ fusion for isthmic spondylolisthesis. J Spinal Disord 5:433–442CrossRefPubMedGoogle Scholar
  23. 23.
    Brantigan JW, Steffee AD (1993) A carbon fiber implant to aid interbody lumbar fusion. Two-year clinical results in the first 26 patients. Spine 18:2106–2107CrossRefPubMedGoogle Scholar
  24. 24.
    Lee DY, Jung TG, Lee SH (2008) Single-level instrumented mini-open transforaminal lumbar interbody fusion in elderly patients. J Neurosurg Spine 9:137–144. doi: 10.3171/SPI/2008/9/8/137 CrossRefPubMedGoogle Scholar
  25. 25.
    Nandyala SV, Marquez-Lara A, Fineberg SJ, Pelton M, Singh K (2014) Prospective, randomized, controlled trial of silicate-substituted calcium phosphate versus rhBMP-2 in a minimally invasive transforaminal lumbar interbody fusion. Spine 39:185–191. doi: 10.1097/BRS.0000000000000106 CrossRefPubMedGoogle Scholar
  26. 26.
    Thaler M, Lechner R, Gstottner M, Kobel C, Bach C (2013) The use of beta-tricalcium phosphate and bone marrow aspirate as a bone graft substitute in posterior lumbar interbody fusion. Eur Spine J 22:1173–1182. doi: 10.1007/s00586-012-2541-3 PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Carter JD, Swearingen AB, Chaput CD, Rahm MD (2009) Clinical and radiographic assessment of transforaminal lumbar interbody fusion using HEALOS collagen-hydroxyapatite sponge with autologous bone marrow aspirate. Spine J 9:434–438. doi: 10.1016/j.spinee.2008.11.004 CrossRefPubMedGoogle Scholar
  28. 28.
    Johnson RG (2014) Bone marrow concentrate with allograft equivalent to autograft in lumbar fusions. Spine 39:695–700. doi: 10.1097/BRS.0000000000000254 CrossRefPubMedGoogle Scholar
  29. 29.
    Hustedt JW, Jegede KA, Badrinath R, Bohl DD, Blizzard DJ, Grauer JN (2013) Optimal aspiration volume of vertebral bone marrow for use in spinal fusion. Spine J 13:1217–1222. doi: 10.1016/j.spinee.2013.07.435 CrossRefPubMedGoogle Scholar
  30. 30.
    Carreon LY, Puno RM, Dimar JR, Glassman SD, Johnson JR (2003) Perioperative complications of posterior lumbar decompression and arthrodesis in older adults. J Bone Joint Surg Am 85-A:2089–2092Google Scholar
  31. 31.
    Andersen T, Christensen FB, Niedermann B, Helmig P, Hoy K, Hansen ES, Bunger C (2009) Impact of instrumentation in lumbar spinal fusion in elderly patients: 71 patients followed for 2–7 years. Acta orthopaedica 80:445–450. doi: 10.3109/17453670903170505 PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Fischgrund JS, Mackay M, Herkowitz HN, Brower R, Montgomery DM, Kurz LT (1997) 1997 Volvo Award winner in clinical studies. Degenerative lumbar spondylolisthesis with spinal stenosis: a prospective, randomized study comparing decompressive laminectomy and arthrodesis with and without spinal instrumentation. Spine 22:2807–2812CrossRefPubMedGoogle Scholar
  33. 33.
    Hu SS (1997) Internal fixation in the osteoporotic spine. Spine 22:43S–48SCrossRefPubMedGoogle Scholar
  34. 34.
    Okuyama K, Abe E, Suzuki T, Tamura Y, Chiba M, Sato K (2001) Influence of bone mineral density on pedicle screw fixation: a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients. Spine J 1:402–407CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Remi M. Ajiboye
    • 1
    Email author
  • Jason T. Hamamoto
    • 1
  • Mark A. Eckardt
    • 1
  • Jeffrey C. Wang
    • 2
  1. 1.Department of Orthopaedic SurgeryUCLA Medical CenterSanta MonicaUSA
  2. 2.Department of Orthopaedic SurgeryKeck Medicine of USCLos AngelesUSA

Personalised recommendations