European Spine Journal

, Volume 25, Issue 2, pp 450–466 | Cite as

Reliability and validity of inexpensive and easily administered anthropometric clinical evaluation methods of postural asymmetry measurement in adolescent idiopathic scoliosis: a systematic review

  • Ashleigh Prowse
  • Rodney Pope
  • Paul Gerdhem
  • Allan Abbott
Review Article



As accurate and reproducible measurements of spinal curvature are crucial in the examination of patients with adolescent idiopathic scoliosis (AIS), this systematic review aims to report on the reliability and validity of a range of inexpensive and easily administered anthropometric methods of postural asymmetry measurement in an AIS population, to inform practice in a clinical setting.


A systematic search of health research databases located studies assessing reliability and validity of inexpensive and easily administered anthropometric measures.


Fourteen studies satisfied eligibility criteria. The methodological quality of included studies ranged from low to high. Validity studies were of moderate to high quality. In total, nine clinically applicable, inexpensive and easily administered anthropometric methods were identified, for assessing AIS curvature. All methods demonstrated high to very high inter-observer and intra-observer reliability. Reported criterion validity of the scoliometer and 2D photographs, when compared to Cobb angle assessed from radiographs, ranged from low to very high. iPhone measurements correlated well with scoliometer measurements. 2D photography results had a moderate to high correlation with 3D topography results.


Overall, strong levels of evidence exist for iPhone and scoliometer measurements, with a high to very high reliability and moderate to very high validity. Moderate levels of evidence exist for scoliometer with mathematical formula and clinical examination with moderate and low validity, respectively. Limited evidence exists for aesthetic tools TRACE and AI and 2D photography. These results indicate there are accurate and reproducible anthropometric measures that are inexpensive and applicable in therapy settings to assess postural asymmetry; however, these only exist for measurement in the transverse plane, despite 3D characteristics of AIS. Further research is required into an inexpensive and easily administered method that can assess postural asymmetry in all anatomical planes.


Reliability Validity Adolescent idiopathic scoliosis Postural asymmetry Measurement Anthropometric 


Conflict of interest



  1. 1.
    Weinstein SL, Dolan LA, Cheng JCY, Danielsson A, Morcueride JA (2008) Adolescent idiopathic scoliosis. Lancet 371(9623):1527–1537. doi: 10.1016/S0140-6736(08)60658-3 PubMedCrossRefGoogle Scholar
  2. 2.
    Wang WJ, Yeung HY, Chu WC, Tang NL, Lee KM, Qiu Y, Burwell RG, Cheng JC (2011) Top theories for the etiopathogenesis of adolescent idiopathic scoliosis. J Pediatric Orthop 31(1 Suppl):S14–S27. doi: 10.1097/BPO.0b013e3181f73c12 CrossRefGoogle Scholar
  3. 3.
    Hawes MC, O’Brien JP (2006) The transformation of spinal curvature into spinal deformity: pathological processes and implications for treatment. Scoliosis 1(1):3. doi: 10.1186/1748-7161-1-3 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Rigo M (2011) Patient evaluation in idiopathic scoliosis: radiographic assessment, trunk deformity and back asymmetry. Physiother Theory Pract 27(1):7–25. doi: 10.3109/09593985.2010.503990 PubMedCrossRefGoogle Scholar
  5. 5.
    Konieczny MR, Senyurt H, Krauspe R (2013) Epidemiology of adolescent idiopathic scoliosis. J Child Orthop 7(1):3–9. doi: 10.1007/s11832-012-0457-4 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Fong DY, Lee CF, Cheung KM, Cheng JC, Ng BK, Lam TP, Mak KH, Yip PS, Luk KD (2010) A meta-analysis of the clinical effectiveness of school scoliosis screening. Spine 35(10):1061–1071. doi: 10.1097/BRS.0b013e3181bcc835 PubMedGoogle Scholar
  7. 7.
    Sabirin J, Bakri R, Buang SN, Abdullah AT, Shapie A (2010) School scoliosis screening programme-a systematic review. Med J Malays 65(4):261–267Google Scholar
  8. 8.
    Sox HC Jr, Berwick DM, Berg AO, Frame PS, Fryback DG, Grimes DA, Lawrence RS, Wallace RB, Washington AE, Wilson MEH, Woolf SH (1993) Screening for adolescent idiopathic scoliosis: review article. JAMA 269(20):2667–2672. doi: 10.1001/jama.1993.03500200081038
  9. 9.
    Bunnell WP (1984) An objective criterion for scoliosis screening. J Bone Joint Surg 66(9):1381–1387PubMedGoogle Scholar
  10. 10.
    Torell G, Nordwall A, Nachemson A (1981) The changing pattern of scoliosis treatment due to effective screening. J Bone Joint Surg 63(3):337–341PubMedGoogle Scholar
  11. 11.
    Coelho DM, Bonagamba GH, Oliveira AS (2013) Scoliometer measurements of patients with idiopathic scoliosis. Braz J Phys Ther 17(2):179–184. doi: 10.1590/S1413-35552012005000081 PubMedCrossRefGoogle Scholar
  12. 12.
    Kiely PJ, Grevitt MP (2008) Recent developments in scoliosis surgery. Orthop Trauma 22(1):42–47. doi: 10.1016/j.cuor.2007.04.011 Google Scholar
  13. 13.
    Weinstein SL, Dolan LA, Spratt KF, Peterson KK, Spoonamore MJ, Ponseti IV (2003) Health and function of patients with untreated idiopathic scoliosis: a 50-year natural history study. JAMA 289(5):559–567PubMedCrossRefGoogle Scholar
  14. 14.
    Kotwicki T, Negrini S, Grivas TB, Rigo M, Maruyama T, Durmala J, Zaina F, Members of the International Society on Scoliosis Orthopaedic Rehabilitation and Treatment (2009) Methodology of evaluation of morphology of the spine and the trunk in idiopathic scoliosis and other spinal deformities—6th SOSORT consensus paper. Scoliosis 4:26. doi: 10.1186/1748-7161-4-26 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Knott P, Pappo E, Cameron M, Demauroy J, Rivard C, Kotwicki T, Zaina F, Wynne J, Stikeleather L, Bettany-Saltikov J, Grivas TB, Durmala J, Maruyama T, Negrini S, O’Brien JP, Rigo M (2014) SOSORT 2012 consensus paper: reducing x-ray exposure in pediatric patients with scoliosis. Scoliosis 9:4. doi: 10.1186/1748-7161-9-4 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Vidal C, Ilharreborde B, Azoulay R, Sebag G, Mazda K (2013) Reliability of cervical lordosis and global sagittal spinal balance measurements in adolescent idiopathic scoliosis. Eur Spine J 22(6):1362–1367. doi: 10.1007/s00586-013-2752-2 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Grivas TB (2008) Conservative scoliosis treatment: section V clinical evaluation and classification. Studies in health technology and informatics, vol 135. IOS Press, AmsterdamGoogle Scholar
  18. 18.
    Kowalski IM, Protasiewicz-Faldowska H, Dwornik M, Pierożyński B, Raistenskis J, Kiebzak W (2014) Objective parallel-forms reliability assessment of 3 dimension real-time body posture screening tests. BMC Pediatr 14:221. doi: 10.1186/1471-2431-14-221 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Zabjek KF, Leroux MA, Coillard C, Rivard CH, Prince F (2005) Evaluation of segmental postural characteristics during quiet standing in control and idiopathic scoliosis patients. Clin Biomech 20(5):483–490. doi: 10.1016/j.clinbiomech.2005.01.003 CrossRefGoogle Scholar
  20. 20.
    Somoskeoy S, Tunyogi-Csapo M, Bogyo C, Illes T (2012) Accuracy and reliability of coronal and sagittal spinal curvature data based on patient-specific three-dimensional models created by the EOS 2D/3D imaging system. Spine J Off J North Am Spine Soc 12(11):1052–1059. doi: 10.1016/j.spinee.2012.10.002 CrossRefGoogle Scholar
  21. 21.
    Komeili A, Westover LM, Parent EC, Moreau M, El-Rich M, Adeeb S (2014) Surface topography asymmetry maps categorizing external deformity in scoliosis. Spine 14(6):973.e972–983.e972. doi: 10.1016/j.spinee.2013.09.032 Google Scholar
  22. 22.
    Brink Y, Louw Q, Grimmer-Somers K (2011) The quality of evidence of psychometric properties of three-dimensional spinal posture-measuring instruments. BMC Musculoskelet Disord 12:93. doi: 10.1186/1471-2474-12-93 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Fortin C, Feldman DE, Cheriet F, Gravel D, Gauthier F, Labelle H (2012) Reliability of a quantitative clinical posture assessment tool among persons with idiopathic scoliosis. Physiotherapy 98(1):64–75. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  24. 24.
    Shaw M, Adam CJ, Izatt MT, Licina P, Askin GN (2012) Use of the iPhone for Cobb angle measurement in scoliosis. Eur Spine J 21(6):1062–1068. doi: 10.1007/s00586-011-2059-0 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Pub Lib Sci Med Coll 6(7):e1000100. doi: 10.1371/journal.pmed.1000100 Google Scholar
  26. 26.
    Brink Y, Louw QA (2012) Clinical instruments: reliability and validity critical appraisal. Int J Eval Clin Pract 18(6):1126–1132. doi: 10.1111/j.1365-2753.2011.01707.x CrossRefGoogle Scholar
  27. 27.
    Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191PubMedCrossRefGoogle Scholar
  28. 28.
    van Tulder M, Furlan A, Bombardier C, Bouter L, Editorial Board of the Cochrane Collaboration Back Review Group (2003) Updated method guidelines for systematic reviews in the cochrane collaboration back review group. Spine 28(12):1290–1299. doi: 10.1097/01.BRS.0000065484.95996.AF PubMedGoogle Scholar
  29. 29.
    Munro BH, Visintainer MA (2005) Statistical methods for health care research, vol 1, 5th edn. Lippincott, PhiladelphiaGoogle Scholar
  30. 30.
    Chowanska J, Kotwicki T, Rosadzinski K, Sliwinski Z (2012) School screening for scoliosis: can surface topography replace examination with scoliometer? Scoliosis 7:9. doi: 10.1186/1748-7161-7-9 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    DeWilde L, Plasschaert F, Cattoir H, Uyttendaele D (1998) Examination of the back using the Bunnell scoliometer in a Belgian school population. Acta Orthop Belg 64(2):136–143Google Scholar
  32. 32.
    deOliveira TS, Candotti CT, LaTorre M, Pelinson PP, Furlanetto TS, Kutchak FM, Loss JF (2012) Validity and reproducibility of the measurements obtained using the flexicurve instrument to evaluate the angles of thoracic and lumbar curvatures of the spine in the sagittal plane. Rehabil Res Pract 2012:186156. doi: 10.1155/2012/186156 Google Scholar
  33. 33.
    Cote P, Kreitz BG, Cassidy JD, Dzus AK, Martel J (1998) A study of the diagnostic accuracy and reliability of the scoliometer and Adam’s forward bend test. Spine 23(7):796–802 (discussion 803) PubMedCrossRefGoogle Scholar
  34. 34.
    Fortin C (2010) Developpement et validation d’un outil clinique pour l’analyse quantitative de la posture aupres de personnes atteintes d’une scoliose idiopathique. Universite de Montreal, MontrealGoogle Scholar
  35. 35.
    Fortin C, Feldman DE, Cheriet F, Labelle H (2010) Validity of a quantitative clinical measurement tool of trunk posture in idiopathic scoliosis. Spine 35(19):E988–E994. doi: 10.1097/BRS.0b013e3181cd2cd2 PubMedCrossRefGoogle Scholar
  36. 36.
    Amendt LE, Ause-Ellias KL, Eybers JL, Wadsworth CT, Nielsen DH, Weinstein SL (1990) Validity and reliability testing of the scoliometer. Phys Ther 70(2):108–117PubMedGoogle Scholar
  37. 37.
    Balg F, Juteau M, Theoret C, Svotelis A, Grenier G (2014) Validity and reliability of the iPhone to measure rib hump in scoliosis. J Pediatr Orthop 34(8):774–779. doi: 10.1097/BPO.0000000000000195 PubMedCrossRefGoogle Scholar
  38. 38.
    Korovessis PG, Stamatakis MV (1996) Prediction of Scoliotic cobb angle with the use of the scoliometer. Spine 21(14):1661–1666PubMedCrossRefGoogle Scholar
  39. 39.
    Izatt MT, Bateman GR, Adam CJ (2012) Evaluation of the iPhone with an acrylic sleeve versus the scoliometer for rib hump measurement in scoliosis. Scoliosis 7(1):14. doi: 10.1186/1748-7161-7-14 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Driscoll M, Fortier-Tougas F, Labelle H, Parent S, Mac-Thong J (2014) Evaluation of an apparatus to be combined with a smartphone for the early detection of spinal deformities. Scoliosis 25(9):10. doi: 10.1186/1748-7161-9-10 CrossRefGoogle Scholar
  41. 41.
    Murrell GA, Coonrad RW, Moorman CT 3rd, Fitch RD (1993) An assessment of the reliability of the scoliometer. Spine 18(6):709–712PubMedCrossRefGoogle Scholar
  42. 42.
    Galatz LM, Sturm PF, Bomze S, Simmens S (1999) Interobserver reliability of scoliometer measurements of rotational deformity in adolescent idiopathic scoliosis. In: Reasearch into spinal deformities 2, vol 59. ST HEAL T, pp 242–245Google Scholar
  43. 43.
    Bonagamba GH, Coelho DM, Oliveira AS (2010) Inter and intra-rater reliability of the scoliometer. Revista brasileira de fisioterapia 14(5):432–438PubMedGoogle Scholar
  44. 44.
    Sapkas G, Papagelopoulos PJ, Kateros K, Koundis GL, Boscainos PJ, Koukou UI, Katonis P (2003) Prediction of Cobb angle in idiopathic adolescent scoliosis. Clin Orthop Relat Res 411:32–39. doi: 10.1097/01.blo.0000068360.47147.30 PubMedCrossRefGoogle Scholar
  45. 45.
    Zaina F, Negrini S, Atanasio S (2009) TRACE (trunk aesthetic clinical evaluation), a routine clinical tool to evaluate aesthetics in Scoliosis patients: development from the aesthetic index (AI) and repeatability. Scoliosis 4:3. doi: 10.1186/1748-7161-4-3 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Grosso C, Negrini S, Boniolo A, Negrini AA (2002) The validity of clinical examination in adolescent spinal deformities. Stud Health Technol Inform 91:123–125PubMedGoogle Scholar
  47. 47.
    Patias P, Grivas TB, Kaspiris A, Aggouris C, Drakoutos E (2010) A review of the tunk surface metrics used as scoliosis and other deformity evaluation indices. Scoliosis 5:12. doi: 10.1186/1748-7161-5-12 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Pearsall DJ, Reid JG, Hedden DM (1992) Comparison of three noninvasive methods for measuring scoliosis. Phys Ther 72(9):648–657PubMedGoogle Scholar
  49. 49.
    Lexell J, Downham D (2005) How to assess the reliability of measurements in rehabilitation. Am J Phys Med Rehab 84:719–723CrossRefGoogle Scholar
  50. 50.
    Rankin G, Stokes M (1998) Reliability of assessment tools in rehabilitation: an illustration of appropriate statistical analyses. Clin Rehab 12(3):187–199CrossRefGoogle Scholar
  51. 51.
    Tricco AC, Tetzlaff J, Sampson M, Fergusson D, Cogo E, Horsley T, Moher D (2008) Few systematic reviews exist documenting the extent of bias: a systematic review. J Clin Epidemiol 61(5):422–434. doi: 10.1016/j.jclinepi.2007.10.017 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Physiotherapy, Faculty of Health Science and MedicineBond UniversityRobinaAustralia
  2. 2.Department of OrthopaedicsKarolinska University HospitalStockholmSweden
  3. 3.Department of Clinical Science, Intervention and Technology (CLINTEC)Karolinska InstitutetStockholmSweden
  4. 4.Department of PhysiotherapyKarolinska University HospitalHuddingeSweden
  5. 5.Division of Physiotherapy, Department of Medical and Health Sciences, Faculty of Health SciencesLinköping UniversityLinköpingSweden

Personalised recommendations