European Spine Journal

, Volume 24, Supplement 3, pp 420–426 | Cite as

Finite element analysis of lordosis restoration with anterior longitudinal ligament release and lateral hyperlordotic cage placement

  • Juan S. Uribe
  • Jeffrey E. Harris
  • J. M. Beckman
  • Alexander W. L. Turner
  • Gregory M. Mundis
  • Behrooz A. Akbarnia
Original Article

Abstract

Purpose

Restoring sagittal alignment is an important factor in the treatment of spinal deformities. Recent investigations have determined that releasing the anterior longitudinal ligament (ALL) and placing hyperlordotic cages can increase lordosis, while minimizing need for 3 column osteotomies. The influences of parameters such as cage height and angle have not been determined. Finite element analysis was employed to assess the extent of lordosis achievable after placement of different sized lordotic cages.

Methods

A 3-dimensional model of a L3–4 segment was used. Disc distraction was simulated by inserting interbody cages mid-body in the disc space. Analyses were performed in the following conditions: (1) intact, (2) ALL release, (3) ALL release + facetectomy, and (4) ALL release + posterior column osteotomy. Changes in segmental lordosis, disc height, foraminal height, and foraminal area were measured.

Results

After ALL resection and insertion of hyperlordotic cages, lordosis was increased in all cases. The lordosis achieved by the shorter cages was less due to posterior disc height maintained by the facet joints. A facetectomy increased segmental lordosis, but led to contact between the spinous processes. For some configurations, a posterior column osteotomy was required if the end goal was to match cage angle to intradiscal angle.

Conclusion

Increased segmental lumbar lordosis is achievable with hyperlordotic cages after ALL resection. Increased cage height tended to increase the amount of lordosis achieved, although in some cases additional posterior bone resection was required to maximize lordosis. Further studies are needed to evaluate the impact on regional lumbar lordosis.

Keywords

Deformity correction Finite element analysis Anterior longitudinal ligament release Sagittal alignment Spine 

References

  1. 1.
    Bridwell KH, Lewis SJ, Lenke LG, Baldus C, Blanke K (2003) Pedicle subtraction osteotomy for the treatment of fixed sagittal imbalance. J Bone Joint Surg Am 85-A:454–463PubMedGoogle Scholar
  2. 2.
    Bridwell KH (2006) Decision making regarding Smith-Petersen vs. pedicle subtraction osteotomy vs. vertebral column resection for spinal deformity. Spine 31:S171–S178CrossRefPubMedGoogle Scholar
  3. 3.
    Buchowski JM, Bridwell KH, Lenke LG et al (2007) Neurologic complications of lumbar pedicle subtraction osteotomy: a 10-year assessment. Spine 32:2245–2252CrossRefPubMedGoogle Scholar
  4. 4.
    Cho KJ, Bridwell KH, Lenke LG, Berra A, Baldus C (2005) Comparison of Smith-Petersen versus pedicle subtraction osteotomy for the correction of fixed sagittal imbalance. Spine 30:2030–2037CrossRefPubMedGoogle Scholar
  5. 5.
    Gill JB, Levin A, Burd T, Longley M (2008) Corrective osteotomies in spine surgery. J Bone Joint Surg Am 90:2509–2520CrossRefPubMedGoogle Scholar
  6. 6.
    Godde S, Fritsch E, Dienst M, Kohn D (2003) Influence of cage geometry on sagittal alignment in instrumented posterior lumbar interbody fusion. Spine 28:1693–1699PubMedGoogle Scholar
  7. 7.
    Lafage V, Schwab F, Vira S et al (2011) Does vertebral level of pedicle subtraction osteotomy correlate with degree of spinopelvic parameter correction? J Neurosurg Spine 14:184–191CrossRefPubMedGoogle Scholar
  8. 8.
    Schwab FJ, Patel A, Shaffrey CI et al (2012) Sagittal realignment failures following pedicle subtraction osteotomy surgery: are we doing enough? Clinical article. J Neurosurg Spine 16:539–546CrossRefPubMedGoogle Scholar
  9. 9.
    Berjano P, Aebi M (2015) Pedicle subtraction osteotomies (PSO) in the lumbar spine for sagittal deformities. Eur Spine J 24(Suppl 1):49–57CrossRefGoogle Scholar
  10. 10.
    Deukmedjian AR, Dakwar E, Ahmadian A, Smith DA, Uribe JS (2012) Early outcomes of minimally invasive anterior longitudinal ligament release for correction of sagittal imbalance in patients with adult spinal deformity. Sci World J 2012:789698CrossRefGoogle Scholar
  11. 11.
    Deukmedjian AR, Le TV, Baaj AA, Dakwar E, Smith DA, Uribe JS (2012) Anterior longitudinal ligament release using the minimally invasive lateral retroperitoneal transpsoas approach: a cadaveric feasibility study and report of 4 clinical cases. J Neurosurg Spine 17:530–539CrossRefPubMedGoogle Scholar
  12. 12.
    Manwaring JC, Bach K, Ahmadian AA, Deukmedjian AR, Smith DA, Uribe JS (2014) Management of sagittal balance in adult spinal deformity with minimally invasive anterolateral lumbar interbody fusion: a preliminary radiographic study. J Neurosurg Spine 20:515–522CrossRefPubMedGoogle Scholar
  13. 13.
    Uribe JS, Smith DA, Dakwar E et al (2012) Lordosis restoration after anterior longitudinal ligament release and placement of lateral hyperlordotic interbody cages during the minimally invasive lateral transpsoas approach: a radiographic study in cadavers. J Neurosurg Spine 17:476–485CrossRefPubMedGoogle Scholar
  14. 14.
    Akbarnia BA, Mundis GM Jr, Moazzaz P et al (2014) Anterior column realignment (ACR) for focal kyphotic spinal deformity using a lateral transpsoas approach and ALL release. J Spinal Disord Tech 27:29–39CrossRefPubMedGoogle Scholar
  15. 15.
    Berjano P, Damilano M, Lamartina C (2012) Sagittal alignment correction and reconstruction of lumbar post-traumatic kyphosis via MIS lateral approach. Eur Spine J 21:2718–2720CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Berjano P, Lamartina C (2013) Far lateral approaches (XLIF) in adult scoliosis. Eur Spine J 22(Suppl 2):S242–S253CrossRefPubMedGoogle Scholar
  17. 17.
    Rohlmann A, Bauer L, Zander T, Bergmann G, Wilke HJ (2006) Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data. J Biomech 39:981–989CrossRefPubMedGoogle Scholar
  18. 18.
    Schmidt H, Heuer F, Drumm J, Klezl Z, Claes L, Wilke HJ (2007) Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin Biomech 22:377–384CrossRefGoogle Scholar
  19. 19.
    Hegazy RM, Abdelrahman AY, Azab WA (2014) Computed tomographic evaluation of C5 root exit foramen in patients with cervical spondylotic myelopathy. Surg Neurol Int 5:S59–S61PubMedCentralPubMedGoogle Scholar
  20. 20.
    Grubb SA, Lipscomb HJ (1992) Diagnostic findings in painful adult scoliosis. Spine (Phila Pa 1976) 17:518–527CrossRefGoogle Scholar
  21. 21.
    Isaacs RE, Hyde J, Goodrich JA, Rodgers WB, Phillips FM (2010) A prospective, nonrandomized, multicenter evaluation of extreme lateral interbody fusion for the treatment of adult degenerative scoliosis: perioperative outcomes and complications. Spine 35:S322–S330CrossRefPubMedGoogle Scholar
  22. 22.
    Schwab F, Lafage V, Patel A, Farcy JP (2009) Sagittal plane considerations and the pelvis in the adult patient. Spine (Phila Pa 1976) 34:1828–1833CrossRefGoogle Scholar
  23. 23.
    Baldus CR, Bridwell KH, Lenke LG, Okubadejo GO (2010) Can we safely reduce blood loss during lumbar pedicle subtraction osteotomy procedures using tranexamic acid or aprotinin? A comparative study with controls. Spine (Phila Pa 1976) 35:235–239CrossRefGoogle Scholar
  24. 24.
    Mummaneni PV, Dhall SS, Ondra SL, Mummaneni VP, Berven S (2008) Pedicle subtraction osteotomy. Neurosurgery 63:171–176CrossRefPubMedGoogle Scholar
  25. 25.
    Costanzo G, Zoccali C, Maykowski P, Walter CM, Skoch J, Baaj AA (2014) The role of minimally invasive lateral lumbar interbody fusion in sagittal balance correction and spinal deformity. Eur Spine J 23(Suppl 6):699–704CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Juan S. Uribe
    • 1
  • Jeffrey E. Harris
    • 2
  • J. M. Beckman
    • 1
  • Alexander W. L. Turner
    • 2
  • Gregory M. Mundis
    • 3
  • Behrooz A. Akbarnia
    • 3
  1. 1.University of South FloridaTampaUSA
  2. 2.NuVasive, IncSan DiegoUSA
  3. 3.San Diego Center for Spinal DisordersLa JollaUSA

Personalised recommendations