Advertisement

European Spine Journal

, Volume 24, Supplement 3, pp 414–419 | Cite as

Impaired bone mineral density as a predictor of graft subsidence following minimally invasive transpsoas lateral lumbar interbody fusion

  • Zachary J. TempelEmail author
  • Gurpreet S. Gandhoke
  • David O. Okonkwo
  • Adam S. Kanter
Original Article

Abstract

Purpose

The LLIF procedure is a useful stand-alone and adjunct surgical approach for many spinal conditions. One complication of LLIF is subsidence of the interbody graft into the vertebral bodies, resulting in severe pain, impaired arthrodesis and potentially fracture of the body. Low bone density, as measured by T score on DEXA scanning, has also been postulated to increase the risk of subsidence.

Methods

A retrospective review of prospectively collected data was performed on all patients who underwent LLIF at this institution consisting of 712 levels in 335 patients. Patients with subsidence following LLIF were recorded. We utilized the T score obtained from the femoral neck DEXA scans, which is used to determine overall fracture risk. The T score of patients with subsidence was compared to those without subsidence.

Results

20 of 57 (35 %) patients without subsidence had a DEXA T score between −1.0 and −2.4 consistent osteopenia, one patient (1.8 %) exhibited a T score less than −2.5, consistent with osteoporosis. 13 patients of 23 (57 %) with subsidence exhibited a T score between −1.0 and −2.4, consistent with osteopenia, five (22 %) exhibited a T score of −2.5 or less, consistent with osteoporosis. The mean DEXA T score in patients with subsidence was −1.65 (SD 1.04) compared to −0.45 (SD 0.97) in patients without subsidence (p < 0.01). The area under the receiver operating characteristic curve for patients with a T score of −1.0 or less was 80.1 %.

Conclusions

Patients with DEXA T scores less than −1.0 who undergo stand-alone LLIF are at a much higher risk of developing graft subsidence. Further, they are at an increased risk of requiring additional surgery. In patients with poor bone quality, consideration could be made to supplement the LLIF cage with posterior instrumentation.

Keywords

Interbody fusion DEXA scan T score Osteoporosis Osteopenia Subsidence 

Notes

Conflict of interest

Dr. Kanter receives royalties from Lanx.

References

  1. 1.
    Kim CW (2010) Scientific basis of minimally invasive spine surgery: prevention of multifidus muscle injury during posterior lumbar surgery. Spine (Phila Pa 1976) 35(26 Suppl):S281–S286CrossRefGoogle Scholar
  2. 2.
    McAfee PC, Phillips FM, Andersson G, Buvenenadran A, Kim CW, Lauryssen C et al (2010) Minimally invasive spine surgery. Spine (Phila Pa 1976) 35(26 Suppl):S271–S273CrossRefGoogle Scholar
  3. 3.
    O’Toole JE, Eichholz KM, Fessler RG (2009) Surgical site infection rates after minimally invasive spinal surgery. J Neurosurg Spine 11(4):471–476CrossRefPubMedGoogle Scholar
  4. 4.
    Rodgers WB, Gerber EJ, Patterson J (2011) Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine (Phila Pa 1976) 36:26–32CrossRefGoogle Scholar
  5. 5.
    Ozgur BM, Aryan HE, Pimenta L, Taylor WR (2006) Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J 6(4):435CrossRefPubMedGoogle Scholar
  6. 6.
    Tempel ZJ, Gandhoke GS, Bonfield CM, Okonkwo DO, Kanter AS (2014) Radiographic and clinical outcomes following combined lateral lumbar interbody fusion and posterior segmental stabilization in patients with adult degenerative scoliosis. Neurosurg Focus 36(5):E11CrossRefPubMedGoogle Scholar
  7. 7.
    Karikari IO, Nimjee SM, Hardin CA, Hughes BD, Hodges TR, Mehta AI et al (2011) Extreme lateral interbody fusion approach for isolated thoracic and thoracolumbar spine diseases: initial clinical experience and early outcomes. J Spinal Disord Tech 24:368–375CrossRefPubMedGoogle Scholar
  8. 8.
    Marchi L, Abdala N, Oliveira L, Amaral R, Coutinho E, Pimenta L (2012) Stand-alone lateral interbody fusion for the treatment of low-grade degenerative spondylolisthesis. Sci World J 2012:456346CrossRefGoogle Scholar
  9. 9.
    Marchi L, Oliveira L, Amaral R, Castro C, Coutinho T, Coutinho E et al (2012) Lateral interbody fusion for treatment of discogenic low back pain: minimally invasive surgical techniques. Adv Orthop 2012:282068CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Pimenta L, Oliveira L, Schaffa T, Coutinho E, Marchi L (2011) Lumbar total disc replacement from an extreme lateral approach: clinical experience with a minimum of 2 years’ follow-up. Clinical article. J Neurosurg Spine 14:38–45CrossRefPubMedGoogle Scholar
  11. 11.
    Formica M, Berjano P, Cavagnaro L, Zanirato A, Piazzolla A, Formica C (2014) Extreme lateral approach to the spine in degenerative and post traumatic lumbar diseases: selection process, results and complications. Eur Spine J 23(6 Suppl):S684–S692CrossRefGoogle Scholar
  12. 12.
    Berjano P, Balsano M, Buric J, Petruzzi M, Lamartina C (2012) Direct lateral access lumbar and thoracolumbar fusion: preliminary results. Eur Spine J 21(1 Suppl):S37–S42CrossRefPubMedGoogle Scholar
  13. 13.
    Berjano P, Lamartina C (2013) Far lateral approaches (XLIF) in adult scoliosis. Eur Spine J 22(2 Suppl):S242–S253CrossRefPubMedGoogle Scholar
  14. 14.
    Costanzo G, Zoccali C, Maykowski P, Walter CM, Skoch J, Baaj AA (2014) The role of minimally invasive lateral lumbar interbody fusion in sagittal balance correction and spinal deformity. Eur Spine J 23(6 Suppl):S699–S704CrossRefGoogle Scholar
  15. 15.
    Tormenti MJ, Maserati MB, Bonfield CM, Okonkwo DO, Kanter AS (2010) Complications and radiographic correction in adult scoliosis following combined transpsoas extreme lateral interbody fusion and posterior pedicle screw instrumentation. Neurosurg Focus 28(3):E7CrossRefPubMedGoogle Scholar
  16. 16.
    Anand N, Rosemann R, Khalsa B, Baron EM (2010) Mid-term to long-term clinical and functional outcomes of minimally invasive correction and fusion for adults with scoliosis. Neurosurg Focus 28(3):E6CrossRefPubMedGoogle Scholar
  17. 17.
    Caputo AM, Michael KW, Chapman TM Jr, Massey GM, Howes CR, Isaacs RE et al (2012) Clinical outcomes of extreme lateral interbody fusion in the treatment of adult degenerative scoliosis. Sci World J 2012:680643CrossRefGoogle Scholar
  18. 18.
    Isaacs RE, Hyde J, Goodrich JA, Rodgers WB, Phillips FM (2010) A prospective, nonrandomized, multicenter evaluation of extreme lateral interbody fusion for the treatment of adult degenerative scoliosis: perioperative outcomes and complications. Spine (Phila Pa 1976) 35(26 Suppl):S322–S330CrossRefGoogle Scholar
  19. 19.
    Sharma AK, Kepler CK, Girardi FP, Cammisa FP, Huang RC, Sama AA (2011) Lateral lumbar interbody fusion: clinical and radiographic outcomes at 1 year: a preliminary report. J Spinal Disord Tech 24:242–250CrossRefPubMedGoogle Scholar
  20. 20.
    Moller DJ, Slimack NP, Acosta FL Jr, Koski TR, Fessler RG, Liu JC (2011) Minimally invasive lateral lumbar interbody fusion and transpsoas approach-related morbidity. Neurosurg Focus 31:E4CrossRefPubMedGoogle Scholar
  21. 21.
    Rodgers WB, Cox CS, Gerber EJ (2010) Early complications of extreme lateral interbody fusion in the obese. J Spinal Disord Tech 23:393–397CrossRefPubMedGoogle Scholar
  22. 22.
    Dua K, Kepler CK, Huang RC, Marchenko A (2010) Vertebral body fracture after anterolateral instrumentation and interbody fusion in two osteoporotic patients. Spine J 10:E11–E15CrossRefPubMedGoogle Scholar
  23. 23.
    Brier-Jones JE, Palmer DK, Inceoglu S, Cheng WK (2011) Vertebral body fractures after transpsoas interbody fusion procedures. Spine J 11:1068–1072CrossRefPubMedGoogle Scholar
  24. 24.
    Le TV, Baaj AA, Dakwar E, Burkett CJ, Murray G, Smith DA, Uribe JS (2012) Subsidence of polyetheretherketone intervertebral cages in minimally invasive lateral retroperitoneal transpsoas lumbar interbody fusion. Spine (Phila Pa 1976) 37(14):1268–1273CrossRefGoogle Scholar
  25. 25.
    Marchi L, Abdala N, Oliveira L, Amaral R, Coutinho E, Pimenta L (2013) Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion. J Neurosurg Spine 19(1):110–118CrossRefPubMedGoogle Scholar
  26. 26.
    Le TV, Smith DA, Greenberg MS, Dakwar E, Baaj AA, Uribe JS (2012) Complications of lateral plating in the minimally invasive lateral transpsoas approach. J Neurosurg Spine 16:302–307CrossRefPubMedGoogle Scholar
  27. 27.
    Blake GM, Fogelman I (2007) The role of DXA bone density scans in the diagnosis and treatment of osteoporosis. Postgrad Med J 83:509–517CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312(7041):1254–1259CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Stone KL, Seeley DG, Lui LY, Cauley JA, Ensrud K, Browner WS, Osteoporotic Fractures Research Group et al (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res 18(11):1947–1954CrossRefPubMedGoogle Scholar
  30. 30.
    Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P et al (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20(7):1185–1194CrossRefPubMedGoogle Scholar
  31. 31.
    Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S et al (2014) The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res 29(11):2520–2526CrossRefPubMedGoogle Scholar
  32. 32.
    Chin DK, Park JY, Yoon YS, Kuh SU, Jin BH, Kim KS et al (2007) Prevalence of osteoporosis in patients requiring spine surgery: incidence and significance of osteoporosis in spine disease. Osteoporos Int 18(9):1219–1224CrossRefPubMedGoogle Scholar
  33. 33.
    Tu CW, Huang KF, Hsu HT, Li HY, Yang SS, Chen YC (2014) Zoledronic acid infusion for lumbar interbody fusion in osteoporosis. J Surg Res 192(1):112–116CrossRefPubMedGoogle Scholar
  34. 34.
    Ohtori S, Inoue G, Orita S, Yamauchi K, Eguchi Y, Ochiai N et al (2013) Comparison of teriparatide and bisphosphonate treatment to reduce pedicle screw loosening after lumbar spinal fusion surgery in postmenopausal women with osteoporosis from a bone quality perspective. Spine (Phila Pa 1976) 38:E487–E492CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Zachary J. Tempel
    • 1
    Email author
  • Gurpreet S. Gandhoke
    • 1
  • David O. Okonkwo
    • 1
  • Adam S. Kanter
    • 1
  1. 1.Department of Neurological Surgery, University of Pittsburgh Medical CenterUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations