European Spine Journal

, Volume 24, Issue 7, pp 1370–1381 | Cite as

A rule-based algorithm can output valid surgical strategies in the treatment of AIS

  • Philippe Phan
  • Jean Ouellet
  • Neila Mezghani
  • Jacques A. de Guise
  • Hubert Labelle
Review Article

Abstract

Background

Variability in surgical strategies for the treatment of adolescent idiopathic scoliosis (AIS) has been demonstrated despite the existence of classifications to guide selection of AIS curves to include in fusion. Decision trees and rule-based algorithms have demonstrated their potential to improve reliability of AIS classification because of their systematic approach and they have also been proposed in algorithms for selection of instrumentation levels in scoliosis. Our working hypothesis is that a rule-based algorithm with a knowledge base extracted from the literature can efficiently output surgical strategies alternatives for a given AIS case. Our objective is to develop a rule-based algorithm based on peer-reviewed literature to output alternative surgical strategies for approach and levels of fusion.

Methods

A literature search of all English Manuscripts published between 2000 and December 2009 with Pubmed and Google scholar electronic search using the following keywords: “adolescent idiopathic scoliosis” and “surgery” alternatively with “levels of fusion” or “approach”. All returned abstracts were screened for contents that could contain rules to include in the knowledge base. A dataset of 1,556 AIS cases treated surgically was used to test the surgical strategy rule-based algorithm (SSRBA) and evaluate how many surgical treatments are covered by the algorithm. The SSRBA was programmed using Matlab. Descriptive statistic was used to evaluate the ability of the rule-based algorithm to cover all treatment alternatives.

Results

A SSRBA was successfully developed following Lenke classification’s concept that the spine is divided into three curve segments [proximal thoracic (PT), main thoracic (MT) and thoracolumbar/lumbar (TL)]. Each of the 1,556 AIS patients in the dataset was ran through the SSRBA. It proposed an average of 3.78 (±2.06) surgical strategies per case. Overall, the SSRBA is able to match the treatment offered by the surgeon in approach and level of fusion 70 % of the time (with one vertebral level leeway).

Conclusion

This study is to the author’s knowledge the first attempt at proposing an algorithm to output all surgical alternatives for a given AIS case. It uses a rule-based algorithm with a knowledge base extracted from peer-reviewed literature in an area with great variability. When tested against a database of AIS patients treated surgically, the SSRBA developed has the ability to propose a surgical plan with respect to approach and levels of fusion that match the surgeon’s plan in a great majority of cases. Since this SSRBA seems to output multiple valid surgical strategies, it could allow the comparisons of various strategies and the outcomes achieved in similar cases in large databases for a given case and guide surgical treatment.

Keywords

Adolescent idiopathic scoliosis Algorithms Surgical treatment planning 

References

  1. 1.
    Lenke L, Betz R, Haher T et al (2001) Multisurgeon assessment of surgical decision-making in adolescent idiopathic scoliosis: curve classification, operative approach, and fusion levels. Spine 26(21):2347–2353PubMedCrossRefGoogle Scholar
  2. 2.
    Aubin C, Labelle H, Ciolofan O (2007) Variability of spinal instrumentation configurations in adolescent idiopathic scoliosis. Eur Spine J 16(1):57–64PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Sanders JO, Haynes R, Lighter D et al (2007) Variation in care among spinal deformity surgeons: results of a survey of the Shriners hospitals for children. Spine 32(13):1444–1449PubMedCrossRefGoogle Scholar
  4. 4.
    Donaldson S, Stephens D, Howard A, Alman B, Narayanan U, Wright JG (2007) Surgical decision making in adolescent idiopathic scoliosis. Spine 32(14):1526–1532PubMedCrossRefGoogle Scholar
  5. 5.
    King H, Moe J, Bradford D, Winter R (1983) The selection of fusion levels in thoracic idiopathic scoliosis. J Bone Joint Surg Am 65(9):1302–1313PubMedGoogle Scholar
  6. 6.
    Lenke L, Betz R, Harms J et al (2001) Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am 83(A8):1169–1181PubMedGoogle Scholar
  7. 7.
    Duong L, Cheriet F, Labelle H (2006) Three-dimensional classification of spinal deformities using fuzzy clustering. Spine 31(8):923–930PubMedCrossRefGoogle Scholar
  8. 8.
    Sangole A, Aubin C, Labelle H et al (2009) Three-dimensional classification of thoracic scoliotic curves. Spine 34(1):91–99PubMedCrossRefGoogle Scholar
  9. 9.
    Stokes I, Sangole A, Aubin C (2009) Classification of scoliosis deformity three-dimensional spinal shape by cluster analysis. Spine 34(6):584–590PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Duong L, Mac-Thiong J, Cheriet F, Labelle H (2009) Three-dimensional subclassification of Lenke type 1 scoliotic curves. J Spinal Disord Tech 22(2):135–143PubMedCrossRefGoogle Scholar
  11. 11.
    Stokes I, Aronsson D (2002) Identifying sources of variability in scoliosis classification using a rule-based automated algorithm. Spine 27(24):2801–2805PubMedCrossRefGoogle Scholar
  12. 12.
    Phan P, Mezghani N, Nault M, Aubin C, De Guise J, Labelle H. (2010) A decision tree can increase accuracy when assessing curve types according to Lenke classification of adolescent idiopathic scoliosis. Spine (Accepted for publication)Google Scholar
  13. 13.
    Margulies J, Floman Y, Robin G et al (1998) An algorithm for selection of instrumentation levels in scoliosis. Eur Spine J 7(2):88–94PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Stansfield SA (1986) ANGY: a rule-based expert system for automatic segmentation of coronary vessels from digital subtracted angiograms. IEEE Trans Pattern Anal Mach Intell 8(2):188–199PubMedCrossRefGoogle Scholar
  15. 15.
  16. 16.
    O’Brien MF, Kuklo TR, Blanke KM, Lenke LG (2004) Spinal Deformity Study Group. Radiographic Measurement Manual. Medtronic Sofamor Danek, Memphis, TNGoogle Scholar
  17. 17.
    Kuklo T, Potter B, O’Brien M, Schroeder T, Lenke L, Polly D (2005) Reliability analysis for digital adolescent idiopathic scoliosis measurements. J Spinal Disord Tech 18(2):152–159PubMedCrossRefGoogle Scholar
  18. 18.
    Potter B, Rosner M, Lehman R, Polly D, Schroeder T, Kuklo T (2005) Reliability of end, neutral, and stable vertebrae identification in adolescent idiopathic scoliosis. Spine 30(14):1658–1663PubMedCrossRefGoogle Scholar
  19. 19.
    Suk S, Kim W, Lee C et al (2000) Indications of proximal thoracic curve fusion in thoracic adolescent idiopathic scoliosis: recognition and treatment of double thoracic curve pattern in adolescent idiopathic scoliosis treated with segmental instrumentation. Spine 25(18):2342–2349PubMedCrossRefGoogle Scholar
  20. 20.
    Rose PS, Lenke LG (2007) Classification of operative adolescent idiopathic scoliosis: treatment guidelines. Orthop Clin North Am 38(4):521–529PubMedCrossRefGoogle Scholar
  21. 21.
    Lenke L (2007) The Lenke classification system of operative adolescent idiopathic scoliosis. Neurosurg Clin N Am 18(2):199–206PubMedCrossRefGoogle Scholar
  22. 22.
    Arlet V, Reddi V (2007) Adolescent idiopathic scoliosis: lenke type I-VI case studies. Neurosurg Clin N Am 18(2):e1–e24PubMedCrossRefGoogle Scholar
  23. 23.
    Cil A, Pekmezci M, Yazici M et al (2005) The validity of Lenke criteria for defining structural proximal thoracic curves in patients with adolescent idiopathic scoliosis. Spine 30(22):2550–2555PubMedCrossRefGoogle Scholar
  24. 24.
    Lenke L, Edwards C, Bridwell K (2003) The Lenke classification of adolescent idiopathic scoliosis: how it organizes curve patterns as a template to perform selective fusions of the spine. Spine 28(20):S199–S207PubMedCrossRefGoogle Scholar
  25. 25.
    Suk S, Lee S, Chung E, Kim J, Kim S (2005) Selective thoracic fusion with segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis: more than 5-year follow-up. Spine 30(14):1602–1609PubMedCrossRefGoogle Scholar
  26. 26.
    de Jonge T, Dubousset JF, Illes T (2002) Sagittal plane correction in idiopathic scoliosis. Spine 27(7):754–760PubMedCrossRefGoogle Scholar
  27. 27.
    Lenke LG (2007) The Lenke classification system of operative adolescent idiopathic scoliosis. Neurosurg Clin N Am 18(2):199–206PubMedCrossRefGoogle Scholar
  28. 28.
    Geck MJ, Rinella A, Hawthorne D et al (2009) Comparison of surgical treatment in Lenke 5C adolescent idiopathic scoliosis: anterior dual rod versus posterior pedicle fixation surgery: a comparison of two practices. Spine 34(18):1942–1951PubMedCrossRefGoogle Scholar
  29. 29.
    Hee H-T, Yu Z-R, Wong H-K (2007) Comparison of segmental pedicle screw instrumentation versus anterior instrumentation in adolescent idiopathic thoracolumbar and lumbar scoliosis. Spine 32(14):1533–1542PubMedCrossRefGoogle Scholar
  30. 30.
    Hurford RK, Lenke LG, Lee SS, Cheng I, Sides B, Bridwell KH (2006) Prospective radiographic and clinical outcomes of dual-rod instrumented anterior spinal fusion in adolescent idiopathic scoliosis: comparison with single-rod constructs. Spine 31(20):2322–2328PubMedCrossRefGoogle Scholar
  31. 31.
    Lowe TG, Alongi PR, Smith DAB, O’Brien MF, Mitchell SL, Pinteric RJ (2003) Anterior single rod instrumentation for thoracolumbar adolescent idiopathic scoliosis with and without the use of structural interbody support. Spine 28(19):2232–2241PubMedCrossRefGoogle Scholar
  32. 32.
    Bullmann V, Halm HF, Niemeyer T, Hackenberg L, Liljenqvist U (2003) Dual-rod correction and instrumentation of idiopathic scoliosis with the Halm-Zielke instrumentation. Spine 28(12):1306–1313PubMedGoogle Scholar
  33. 33.
    Sweet F, Lenke L, Bridwell K, Blanke K, Whorton J (2001) Prospective radiographic and clinical outcomes and complications of single solid rod instrumented anterior spinal fusion in adolescent idiopathic scoliosis. Spine 26(18):1956–1965PubMedCrossRefGoogle Scholar
  34. 34.
    Sweet FA, Lenke LG, Bridwell KH, Blanke KM (1999) Maintaining lumbar lordosis with anterior single solid-rod instrumentation in thoracolumbar and lumbar adolescent idiopathic scoliosis. Spine 24(16):1655–1662PubMedCrossRefGoogle Scholar
  35. 35.
    Sanders AE, Baumann R, Brown H, Johnston CE, Lenke LG, Sink E (2003) Selective anterior fusion of thoracolumbar/lumbar curves in adolescents: when can the associated thoracic curve be left unfused? Spine 28(7):706–713PubMedGoogle Scholar
  36. 36.
    Kuklo T, Potter B, Polly D, Lenke L (2005) Monaxial versus multiaxial thoracic pedicle screws in the correction of adolescent idiopathic scoliosis. Spine 30(18):2113–2120PubMedCrossRefGoogle Scholar
  37. 37.
    Bitan FD, Neuwirth MG, Kuflik PL, Casden A, Bloom N, Siddiqui S (2002) The use of short and rigid anterior instrumentation in the treatment of idiopathic thoracolumbar scoliosis: a retrospective review of 24 cases. Spine 27(14):1553–1557PubMedCrossRefGoogle Scholar
  38. 38.
    Wang Y, Fei Q, Qiu G et al (2008) Anterior spinal fusion versus posterior spinal fusion for moderate lumbar/thoracolumbar adolescent idiopathic scoliosis: a prospective study. Spine 33(20):2166–2172PubMedCrossRefGoogle Scholar
  39. 39.
    Min K, Hahn F, Ziebarth K (2007) Short anterior correction of the thoracolumbar/lumbar curve in King 1 idiopathic scoliosis: the behaviour of the instrumented and non-instrumented curves and the trunk balance. Eur Spine J 16(1):65–72PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Lowe T, Betz R, Lenke L et al (2003) Anterior single-rod instrumentation of the thoracic and lumbar spine: saving levels. Spine 28(20):S208–S216PubMedCrossRefGoogle Scholar
  41. 41.
    Li M, Ni J, Fang X et al (2009) Comparison of selective anterior versus posterior screw instrumentation in Lenke5C adolescent idiopathic scoliosis. Spine 34(11):1162–1166PubMedCrossRefGoogle Scholar
  42. 42.
    Shufflebarger HL, Geck MJ, Clark CE (2004) The posterior approach for lumbar and thoracolumbar adolescent idiopathic scoliosis: posterior shortening and pedicle screws. Spine 29(3):269–276PubMedCrossRefGoogle Scholar
  43. 43.
    Lowe TG, Lenke L, Betz R et al (2006) Distal junctional kyphosis of adolescent idiopathic thoracic curves following anterior or posterior instrumented fusion: incidence, risk factors, and prevention. Spine 31(3):299–302PubMedCrossRefGoogle Scholar
  44. 44.
    Newton P, Faro F, Lenke L et al (2003) Factors involved in the decision to perform a selective versus nonselective fusion of Lenke 1B and 1C (King-Moe II) curves in adolescent idiopathic scoliosis. Spine 28(20):S217–S223PubMedCrossRefGoogle Scholar
  45. 45.
    Lenke L, Betz R, Bridwell K, Harms J, Clements D, Lowe T (1999) Spontaneous lumbar curve coronal correction after selective anterior or posterior thoracic fusion in adolescent idiopathic scoliosis. Spine 24(16):1663–1671PubMedCrossRefGoogle Scholar
  46. 46.
    Muschik MT, Kimmich H, Demmel T (2006) Comparison of anterior and posterior double-rod instrumentation for thoracic idiopathic scoliosis: results of 141 patients. Eur Spine J 15(7):1128–1138PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Betz R, Harms J, Clements D et al (1999) Comparison of anterior and posterior instrumentation for correction of adolescent thoracic idiopathic scoliosis. Spine 24(3):225–239PubMedCrossRefGoogle Scholar
  48. 48.
    Sucato D, Agrawal S, O’Brien M, Lowe T, Richards S, Lenke L (2008) Restoration of thoracic kyphosis after operative treatment of adolescent idiopathic scoliosis: a multicenter comparison of three surgical approaches. Spine 33(24):2630–2636PubMedCrossRefGoogle Scholar
  49. 49.
    D’Andrea LP, Betz RR, Lenke LG, Harms J, Clements DH, Lowe TG (2000) The effect of continued posterior spinal growth on sagittal contour in patients treated by anterior instrumentation for idiopathic scoliosis. Spine 25(7):813–818PubMedCrossRefGoogle Scholar
  50. 50.
    Newton PO, Parent S, Marks M, Pawelek J (2005) Prospective evaluation of 50 consecutive scoliosis patients surgically treated with thoracoscopic anterior instrumentation. Spine 30(17 Suppl):S100–S109PubMedCrossRefGoogle Scholar
  51. 51.
    Lonner B, Kondrachov D, Siddiqi F, Hayes V, Scharf C (2006) Thoracoscopic spinal fusion compared with posterior spinal fusion for the treatment of thoracic adolescent idiopathic scoliosis. J Bone Joint Surg Am 88(5):1022–1034PubMedCrossRefGoogle Scholar
  52. 52.
    Kuklo TR, Lenke LG, Won DS et al (2001) Spontaneous proximal thoracic curve correction after isolated fusion of the main thoracic curve in adolescent idiopathic scoliosis. Spine 26(18):1966–1975PubMedCrossRefGoogle Scholar
  53. 53.
    Suk SI, Kim WJ, Lee CS et al (2000) Indications of proximal thoracic curve fusion in thoracic adolescent idiopathic scoliosis: recognition and treatment of double thoracic curve pattern in adolescent idiopathic scoliosis treated with segmental instrumentation. Spine 25(18):2342–2349PubMedCrossRefGoogle Scholar
  54. 54.
    Lonner BS, Kondrachov D, Siddiqi F, Hayes V, Scharf C (2007) Thoracoscopic spinal fusion compared with posterior spinal fusion for the treatment of thoracic adolescent idiopathic scoliosis. Surgical technique. J Bone Jt Surg Am 89(Suppl 2 Pt.1):142–156CrossRefGoogle Scholar
  55. 55.
    Lonner BS, Auerbach JD, Estreicher M et al (2009) Video-assisted anterior thoracoscopic spinal fusion versus posterior spinal fusion: a comparative study utilizing the SRS-22 outcome instrument. Spine 34(2):193–198PubMedCrossRefGoogle Scholar
  56. 56.
    Suk SI, Lee SM, Chung ER, Kim JH, Kim SS (2005) Selective thoracic fusion with segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis: more than 5-year follow-up. Spine 30(14):1602–1609PubMedCrossRefGoogle Scholar
  57. 57.
    Suk SI, Lee SM, Chung ER, Kim JH, Kim WJ, Sohn HM (2003) Determination of distal fusion level with segmental pedicle screw fixation in single thoracic idiopathic scoliosis. Spine 28(5):484–491PubMedGoogle Scholar
  58. 58.
    Trobisch PD, Ducoffe AR, Lonner BS, Errico TJ (2013) Choosing fusion levels in adolescent idiopathic scoliosis. J Am Acad Orthop Surg 21(9):519–528PubMedCrossRefGoogle Scholar
  59. 59.
    Puno R, An K, Puno R, Jacob A, Chung S (2003) Treatment recommendations for idiopathic scoliosis: an assessment of the Lenke classification. Spine 28(18):2102–2114PubMedCrossRefGoogle Scholar
  60. 60.
    Phan P, Mezghani N, Wai EK, de Guise J, Labelle H (2013) Artificial neural networks assessing adolescent idiopathic scoliosis: comparison with Lenke classification. Spine J 13(11):1527–1533PubMedCrossRefGoogle Scholar
  61. 61.
    Clements DH, Marks M, Newton PO et al (2011) Did the Lenke classification change scoliosis treatment? Spine 36(14):1142–1145PubMedCrossRefGoogle Scholar
  62. 62.
    Lenke L, Betz R, Clements D et al (2002) Curve prevalence of a new classification of operative adolescent idiopathic scoliosis: does classification correlate with treatment? Spine 27(6):604–611PubMedCrossRefGoogle Scholar
  63. 63.
    Hwang SW, Samdani AF, Cahill PJ (2012) The impact of segmental and en bloc derotation maneuvers on scoliosis correction and rib prominence in adolescent idiopathic scoliosis. J Neurosurg Spine 16(4):345–350PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Philippe Phan
    • 1
    • 4
  • Jean Ouellet
    • 2
  • Neila Mezghani
    • 3
  • Jacques A. de Guise
    • 3
  • Hubert Labelle
    • 1
  1. 1.Sainte-Justine University Hospital CenterMontréalCanada
  2. 2.Shriners Hospital for ChildrenMcgill University Health CentreMontrealCanada
  3. 3.École de Technologie supérieure et LIOCentre de recherche du CHUMMontréalCanada
  4. 4.Division of OrthopedicsThe Ottawa Hospital Civic CampusOttawaCanada

Personalised recommendations