European Spine Journal

, Volume 24, Supplement 1, pp 3–15 | Cite as

Sagittal deformities of the spine: factors influencing the outcomes and complications

  • Bassel G. Diebo
  • Jensen Henry
  • Virginie Lafage
  • Pedro Berjano
Review Article


Degenerative changes have the potential to greatly disrupt the normal curvature of the spine, leading to sagittal malalignment. This phenomenon is often treated with operative modalities, such as osteotomies, though even with surgery, only one-third of patients may reach neutral alignment. Improvement in surgical outcomes may be achieved through better understanding of radiographic spino-pelvic parameters and their association with deformity. Methodical surgical planning, including selection of levels of instrumentation and site of the osteotomy, is crucial in determining the optimal plan for a patient’s specific pathology and may minimize risk of developing postoperative proximal junctional kyphosis/failure. While sagittal alignment is essential in operative strategy, the coronal plane should not be overlooked, as it may affect the osteotomy technique. The concepts of sagittal balance and alignment are further complicated in patients with neuromuscular diseases such as Parkinson’s disease, and appreciation of the interplay between anatomic and postural deformities is necessary to properly treat these patients. Finally, given the importance of sagittal alignment and the role of osteotomies in treatment for deformity, the need for future research becomes apparent. Novel intraoperative measurement techniques and three-dimensional analysis of the spine may allow for vastly improved operative correction. Furthermore, awareness of the relationship between alignment and balance, the soft tissue envelope, and compensatory mechanisms will provide a more comprehensive conception of the nature of spinal deformity and the modalities with which it is treated.


Spinal deformity Osteotomy Sagittal malalignment Parkinson’s disease Spino-pelvic parameters 


Conflict of interest



  1. 1.
    Kim YB, Kim YJ, Ahn Y-J et al (2014) A comparative analysis of sagittal spinopelvic alignment between young and old men without localized disc degeneration. Eur Spine J 23:1400–1406. doi: 10.1007/s00586-014-3236-8 PubMedCrossRefGoogle Scholar
  2. 2.
    Barrey C, Roussouly P, Perrin G, Le Huec J-C (2011) Sagittal balance disorders in severe degenerative spine. Can we identify the compensatory mechanisms? Eur Spine J 20(Suppl 5):626–633. doi: 10.1007/s00586-011-1930-3 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Obeid I, Hauger O, Aunoble S et al (2011) Global analysis of sagittal spinal alignment in major deformities: correlation between lack of lumbar lordosis and flexion of the knee. Eur Spine J 20(Suppl 5):681–685. doi: 10.1007/s00586-011-1936-x PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Schwab F, Patel A, Ungar B et al (2010) Adult spinal deformity-postoperative standing imbalance: how much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine 35:2224–2231. doi: 10.1097/BRS.0b013e3181ee6bd4 PubMedCrossRefGoogle Scholar
  5. 5.
    Schwab F, Lafage V, Farcy J-P et al (2007) Surgical rates and operative outcome analysis in thoracolumbar and lumbar major adult scoliosis: application of the new adult deformity classification. Spine 32:2723–2730. doi: 10.1097/BRS.0b013e31815a58f2 PubMedCrossRefGoogle Scholar
  6. 6.
    Youssef JA, Orndorff DO, Patty CA et al (2013) Current status of adult spinal deformity. Global Spine J 3:51–62. doi: 10.1055/s-0032-1326950 PubMedCentralPubMedGoogle Scholar
  7. 7.
    Liu S, Schwab F, Smith JS et al (2014) Likelihood of reaching minimal clinically important difference in adult spinal deformity: a comparison of operative and nonoperative treatment. Ochsner J 14:67–77PubMedCentralPubMedGoogle Scholar
  8. 8.
    Wang MY, Mummaneni PV, Fu K-MG et al (2014) Less invasive surgery for treating adult spinal deformities: ceiling effects for deformity correction with 3 different techniques. Neurosurg Focus 36:E12. doi: 10.3171/2014.3.FOCUS1423 PubMedCrossRefGoogle Scholar
  9. 9.
    Bridwell KH, Glassman S, Horton W et al (2009) Does treatment (nonoperative and operative) improve the two-year quality of life in patients with adult symptomatic lumbar scoliosis: a prospective multicenter evidence-based medicine study. Spine 34:2171–2178. doi: 10.1097/BRS.0b013e3181a8fdc8 PubMedCrossRefGoogle Scholar
  10. 10.
    Smith JS, Shaffrey CI, Berven S et al (2009) Improvement of back pain with operative and nonoperative treatment in adults with scoliosis. Neurosurgery 65:86–93. doi: 10.1227/01.NEU.0000347005.35282.6C (discussion 93–94)PubMedCrossRefGoogle Scholar
  11. 11.
    Schwab FJ, Hawkinson N, Lafage V et al (2012) Risk factors for major peri-operative complications in adult spinal deformity surgery: a multi-center review of 953 consecutive patients. Eur Spine J 21:2603–2610. doi: 10.1007/s00586-012-2370-4 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Bianco K, Norton R, Schwab F et al (2014) Complications and intercenter variability of three-column osteotomies for spinal deformity surgery: a retrospective review of 423 patients. Neurosurg Focus 36:E18. doi: 10.3171/2014.2.FOCUS1422 PubMedCrossRefGoogle Scholar
  13. 13.
    Pichelmann MA, Lenke LG, Bridwell KH et al (2010) Revision rates following primary adult spinal deformity surgery: six hundred forty-three consecutive patients followed-up to twenty-two years postoperative. Spine 35:219–226. doi: 10.1097/BRS.0b013e3181c91180 PubMedCrossRefGoogle Scholar
  14. 14.
    Maier SP, Lafage V, Smith JS et al (2013) Revision surgery after three-column osteotomy (3CO) in 335 adult spinal deformity (ASD) patients: intercenter variability and risk factors. Spine J 13:S9–S10. doi: 10.1016/j.spinee.2013.07.052 CrossRefGoogle Scholar
  15. 15.
    Saban KL, Penckofer SM (2007) Patient expectations of quality of life following lumbar spinal surgery. J Neurosci Nurs 39:180–189PubMedCrossRefGoogle Scholar
  16. 16.
    Saban KL, Penckofer SM (2007) Patient expectations of quality of life following lumbar spinal surgery. J Neurosci Nurs 39:180–189PubMedCrossRefGoogle Scholar
  17. 17.
    Blondel B, Schwab F, Bess S et al (2013) Posterior global malalignment after osteotomy for sagittal plane deformity: it happens and here is why. Spine 38:E394–E401. doi: 10.1097/BRS.0b013e3182872415 PubMedCrossRefGoogle Scholar
  18. 18.
    Maier S, Smith JS, Schwab F et al (2014) Revision surgery after three-column osteotomy in 335 adult spinal deformity patients: inter-center variability and risk factors. Spine 39:881–885. doi: 10.1097/BRS.0000000000000304 CrossRefGoogle Scholar
  19. 19.
    Moal B, Lafage VC, Maier SP et al (2014) Discrepancies in preoperative planning and operative execution in the correction of sagittal spinal deformities. North American Spine Society 29th Annual Meeting (San Francisco). Podium PresentationGoogle Scholar
  20. 20.
    Dubousset J (1994) Three-dimensional analysis of the scoliotic deformity. In: Weinstein S (ed) The pediatric spine: principles and practices. Raven Press, New York, pp 479–496Google Scholar
  21. 21.
    Legaye J, Duval-Beaupère G, Hecquet J, Marty C (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7:99–103PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Lafage V, Schwab F, Patel A et al (2009) Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine 34:E599–E606. doi: 10.1097/BRS.0b013e3181aad219 PubMedCrossRefGoogle Scholar
  23. 23.
    Vialle R, Levassor N, Rillardon L et al (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am 87:260–267. doi: 10.2106/JBJS.D.02043 PubMedCrossRefGoogle Scholar
  24. 24.
    Berjano P, Langella F, Ismael M-F et al (2014) Successful correction of sagittal imbalance can be calculated on the basis of pelvic incidence and age. Eur Spine J 23(Suppl 6):587–596. doi: 10.1007/s00586-014-3556-8 PubMedCrossRefGoogle Scholar
  25. 25.
    Schwab FJ, Blondel B, Bess S et al (2013) Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity: a prospective multicenter analysis. Spine 38:E803–E812. doi: 10.1097/BRS.0b013e318292b7b9 PubMedCrossRefGoogle Scholar
  26. 26.
    Schwab F, Ungar B, Blondel B et al (2012) Scoliosis research society-Schwab adult spinal deformity classification: a validation study. Spine 37:1077–1082. doi: 10.1097/BRS.0b013e31823e15e2 PubMedCrossRefGoogle Scholar
  27. 27.
    Schwab FJ, Diebo BG, Smith JS et al (2014) Fine-tuned surgical planning in adult spinal deformity: determining the lumbar lordosis necessary by accounting for both thoracic kyphosis and pelvic incidence. North American Spine Society 29th Annual Meeting (San Francisco). Podium Presentation. In: The 21st International meeting on advanced spine techniques (IMAST), Valencia, Spain. Two-Minute Podium PresentationGoogle Scholar
  28. 28.
    Been E, Barash A, Marom A, Kramer Pa (2010) Vertebral bodies or discs: which contributes more to human-like lumbar lordosis? Clin Orthop Relat Res 468:1822–1829. doi: 10.1007/s11999-009-1153-7 PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Schultz A, Andersson G, Ortengren R et al (1982) Loads on the lumbar spine. Validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals. J Bone Joint Surg Am 64:713–720PubMedGoogle Scholar
  30. 30.
    Bergin PF, O’Brien JR, Matteini LE et al (2010) The use of spinal osteotomy in the treatment of spinal deformity. Orthopedics 33:586–594. doi: 10.3928/01477447-20100625-22 PubMedCrossRefGoogle Scholar
  31. 31.
    Ondra SL, Marzouk S, Koski T et al (2006) Mathematical calculation of pedicle subtraction osteotomy size to allow precision correction of fixed sagittal deformity. Spine 31:E973–E979. doi: 10.1097/01.brs.0000247950.02886.e5 PubMedCrossRefGoogle Scholar
  32. 32.
    Smith JS, Klineberg E, Schwab F et al (2013) Change in classification grade by the SRS-Schwab adult spinal deformity classification predicts impact on health-related quality of life measures: prospective analysis of operative and non-operative treatment. Spine 38:1663–1671. doi: 10.1097/BRS.0b013e31829ec563 PubMedCrossRefGoogle Scholar
  33. 33.
    Vialle R, Levassor N, Rillardon L et al (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am 87:260–267. doi: 10.2106/JBJS.D.02043 PubMedCrossRefGoogle Scholar
  34. 34.
    Vaz G, Roussouly P, Berthonnaud E, Dimnet J (2002) Sagittal morphology and equilibrium of pelvis and spine. Eur Spine J 11:80–87PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Vialle R, Levassor N, Rillardon L et al (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am 87:260–267. doi: 10.2106/JBJS.D.02043 PubMedCrossRefGoogle Scholar
  36. 36.
    Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine 30:346–353PubMedCrossRefGoogle Scholar
  37. 37.
    Margulies JY, Floman Y, Robin GC et al (1998) An algorithm for selection of instrumentation levels in scoliosis. Eur Spine J 7:88–94PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Blondel B, Wickman AM, Apazidis A et al (2013) Selection of fusion levels in adults with spinal deformity: an update. Spine J 13:464–474. doi: 10.1016/j.spinee.2012.11.046 PubMedCrossRefGoogle Scholar
  39. 39.
    Kim YJ, Bridwell KH, Lenke LG et al (2007) Is the T9, T11, or L1 the more reliable proximal level after adult lumbar or lumbosacral instrumented fusion to L5 or S1? Spine 32:2653–2661. doi: 10.1097/BRS.0b013e31815a5a9d PubMedCrossRefGoogle Scholar
  40. 40.
    Cho K-J, Suk S-I, Park S-R et al (2013) Selection of proximal fusion level for adult degenerative lumbar scoliosis. Eur Spine J 22:394–401. doi: 10.1007/s00586-012-2527-1 PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Kuklo TR (2006) Principles for selecting fusion levels in adult spinal deformity with particular attention to lumbar curves and double major curves. Spine 31:S132–S138. doi: 10.1097/01.brs.0000236023.08226.90 PubMedCrossRefGoogle Scholar
  42. 42.
    Lenke LG, Betz RR, Harms J et al (2001) Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am 8:1169–1181. doi: 10.5455/aces.20130422110147 Google Scholar
  43. 43.
    O’Shaughnessy BA, Bridwell KH, Lenke LG et al (2012) Does a long-fusion “T3-sacrum” portend a worse outcome than a short-fusion “T10-sacrum” in primary surgery for adult scoliosis? Spine 37:884–890. doi: 10.1097/BRS.0b013e3182376414 PubMedCrossRefGoogle Scholar
  44. 44.
    Bridwell KH (2004) Selection of instrumentation and fusion levels for scoliosis: where to start and where to stop. Invited submission from the joint section meeting on disorders of the spine and peripheral nerves, March 2004. J Neurosurg Spine 1:1–8. doi: 10.3171/spi.2004.1.1.0001 PubMedCrossRefGoogle Scholar
  45. 45.
    Lamartina C, Berjano P (2014) Classification of sagittal imbalance based on spinal alignment and compensatory mechanisms. Eur Spine J 23:1177–1189. doi: 10.1007/s00586-014-3227-9 PubMedCrossRefGoogle Scholar
  46. 46.
    Kim YJ, Bridwell KH, Lenke LG et al (2006) Sagittal thoracic decompensation following long adult lumbar spinal instrumentation and fusion to L5 or S1: causes, prevalence, and risk factor analysis. Spine 31:2359–2366. doi: 10.1097/01.brs.0000238969.59928.73 PubMedCrossRefGoogle Scholar
  47. 47.
    Polly DW, Hamill CL, Bridwell KH (2006) Debate: to fuse or not to fuse to the sacrum, the fate of the L5–S1 disc. Spine 31:S179–S184. doi: 10.1097/ PubMedCrossRefGoogle Scholar
  48. 48.
    Edwards CC, Bridwell KH, Patel A et al (2003) Thoracolumbar deformity arthrodesis to L5 in adults: the fate of the L5-S1 disc. Spine 28:2122–2131. doi: 10.1097/01.BRS.0000084266.37210.85 PubMedCrossRefGoogle Scholar
  49. 49.
    Kuhns CA, Bridwell KH, Lenke LG et al (2007) Thoracolumbar deformity arthrodesis stopping at L5: fate of the L5–S1 disc, minimum 5-year follow-up. Spine 32:2771–2776. doi: 10.1097/BRS.0b013e31815a7ece PubMedCrossRefGoogle Scholar
  50. 50.
    Weiner DK, Distell B, Studenski S et al (1994) Does radiographic osteoarthritis correlate with flexibility of the lumbar spine? J Am Geriatr Soc 42:257–263PubMedGoogle Scholar
  51. 51.
    Emami A, Deviren V, Berven S et al (2002) Outcome and complications of long fusions to the sacrum in adult spine deformity. Spine 27:776–786. doi: 10.1097/00007632-200204010-00017 PubMedCrossRefGoogle Scholar
  52. 52.
    Harimaya K, Mishiro T, Lenke LG et al (2011) Etiology and revision surgical strategies in failed lumbosacral fixation of adult spinal deformity constructs. Spine 36:1701–1710. doi: 10.1097/BRS.0b013e3182257eaf PubMedCrossRefGoogle Scholar
  53. 53.
    Tsuchiya K, Bridwell KH, Kuklo TR et al (2006) Minimum 5-year analysis of L5-S1 fusion using sacropelvic fixation (bilateral S1 and iliac screws) for spinal deformity. Spine 31:303–308. doi: 10.1097/01.brs.0000197193.81296.f1 PubMedCrossRefGoogle Scholar
  54. 54.
    Tumialán LM, Mummaneni PV (2008) Long-segment spinal fixation using pelvic screws. Neurosurgery 63:183–190. doi: 10.1227/01.NEU.0000320431.66632.D5 PubMedCrossRefGoogle Scholar
  55. 55.
    Kebaish KM (2010) Sacropelvic fixation: techniques and complications. Spine 35:2245–2251. doi: 10.1097/BRS.0b013e3181f5cfae PubMedCrossRefGoogle Scholar
  56. 56.
    Kim HJ, Boachie-Adjei O, Shaffrey CI et al (2014) Upper thoracic versus lower thoracic upper instrumented vertebrae endpoints have similar outcomes and complications in adult scoliosis. Spine 39:E795–E799. doi: 10.1097/BRS.0000000000000339 PubMedCrossRefGoogle Scholar
  57. 57.
    Scheer JK, Lafage V, Smith JS et al (2014) Maintenance of radiographic correction at 2 years following lumbar pedicle subtraction osteotomy is superior with upper thoracic compared with thoracolumbar junction upper instrumented vertebra. Eur Spine J. doi: 10.1007/s00586-014-3391-y PubMedGoogle Scholar
  58. 58.
    Van Royen BJ, De Gast a (1999) Lumbar osteotomy for correction of thoracolumbar kyphotic deformity in ankylosing spondylitis. A structured review of three methods of treatment. Ann Rheum Dis 58:399–406PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Cw D (1957) Posterior elementectomy in ankylosing arthritis of the spine. Clin Orthop Relat Res 10:274–281Google Scholar
  60. 60.
    Van Royen BJ, Gerhard S (1995) Closing-wedge posterior osteotomy for ankylosing spondylitis. Partial corporectomy and transpedicular fixation in 22 cases. J Bone Joint Surg Br 77:117–121PubMedGoogle Scholar
  61. 61.
    Camargo FP, Cordeiro EN, Napoli MM (1986) Corrective osteotomy of the spine in ankylosing spondylitis. Experience with 66 cases. Clin Orthop Related Res 208:157–167Google Scholar
  62. 62.
    Van Royen BJ, De Gast a, Smit TH (2000) Deformity planning for sagittal plane corrective osteotomies of the spine in ankylosing spondylitis. Eur Spine J 9:492–498PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Lafage V, Schwab F, Vira S et al (2011) Does vertebral level of pedicle subtraction osteotomy correlate with degree of spinopelvic parameter correction? J Neurosurg Spine 14:184–191. doi: 10.3171/2010.9.SPINE10129 PubMedCrossRefGoogle Scholar
  64. 64.
    Lafage V, Diebo B, Schwab F (2014) Spinal alignment formulas and operative planning tools. American Academy of Orthopaedic Surgeons (AAOS) Instructional Course LecturesGoogle Scholar
  65. 65.
    Glattes RC, Bridwell KH, Lenke LG et al (2005) Proximal junctional kyphosis in adult spinal deformity following long instrumented posterior spinal fusion: incidence, outcomes, and risk factor analysis. Spine 30:1643–1649PubMedCrossRefGoogle Scholar
  66. 66.
    Kim Y, Jung J, Bridwell KH, Lenke LG et al (2008) Proximal junctional kyphosis in adult spinal deformity after segmental posterior spinal instrumentation and fusion. Spine 33:2179–2184PubMedCrossRefGoogle Scholar
  67. 67.
    Yagi M, Akilah KB, Boachie-Adjei O (2011) Incidence, risk factors and classification of proximal junctional kyphosis: surgical outcomes review of adult idiopathic scoliosis. Spine 36:E60–E68. doi: 10.1097/BRS.0b013e3181eeaee2 PubMedCrossRefGoogle Scholar
  68. 68.
    Hart RA, McCarthy I, Ames CP et al (2013) Proximal junctional kyphosis and proximal junctional failure. Neurosurg Clin N America 24:213–218. doi: 10.1016/ CrossRefGoogle Scholar
  69. 69.
    Cho SK, Shin JI, Kim YJ (2014) Proximal junctional kyphosis following adult spinal deformity surgery. Eur Spine J. doi: 10.1007/s00586-014-3531-4 Google Scholar
  70. 70.
    Husson J-L, Mallet J-F, Parent H et al (2010) The lumbar-pelvic-femoral complex: applications in spinal imbalance. Orthop Traumatol Surg Res 96:1–9. doi: 10.1016/j.otsr.2010.03.006 CrossRefGoogle Scholar
  71. 71.
    Kallman DA, Plato CC, Tobin JD (1990) The role of muscle loss in the age-related decline of grip strength: cross-sectional and longitudinal perspectives. J Gerontol 45:82–88CrossRefGoogle Scholar
  72. 72.
    Balogun JA, Akindele KA, Nihinlola JO, Marzouk DK (1994) Age-related changes in balance performance. Disabil Rehabil 16:58–62PubMedCrossRefGoogle Scholar
  73. 73.
    Lafage V, Ames C, Schwab F et al (2012) Changes in thoracic kyphosis negatively impact sagittal alignment after lumbar pedicle subtraction osteotomy: a comprehensive radiographic analysis. Spine 37:E180–E187. doi: 10.1097/BRS.0b013e318225b926 PubMedCrossRefGoogle Scholar
  74. 74.
    Kebaish KM, Martin CT, O’Brien JR et al (2013) Use of vertebroplasty to prevent proximal junctional fractures in adult deformity surgery: a biomechanical cadaveric study. Spine J 13:1897–1903. doi: 10.1016/j.spinee.2013.06.039 PubMedCrossRefGoogle Scholar
  75. 75.
    Cammarata M, Aubin C-É, Wang X, Mac-Thiong J-M (2014) Biomechanical risk factors for proximal junctional kyphosis: a detailed numerical analysis of surgical instrumentation variables. Spine 39:E500–E507. doi: 10.1097/BRS.0000000000000222 PubMedCrossRefGoogle Scholar
  76. 76.
    Glassman SD, Berven S, Bridwell K et al (2005) Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine 30:682–688PubMedCrossRefGoogle Scholar
  77. 77.
    Daubs MD, Lenke LG, Bridwell KH et al (2013) Does correction of preoperative coronal imbalance make a difference in outcomes of adult patients with deformity? Spine 38:476–483. doi: 10.1097/BRS.0b013e3182846eb3 PubMedCrossRefGoogle Scholar
  78. 78.
    Gupta MC, Boachie-Adjei O, Cunningham ME et al (2013) Coronal imbalance may be neglected in patients undergoing majority sagittal deformity correction. International Meeting on Advanced Spine Techniques (IMAST)Google Scholar
  79. 79.
    Moal B, Schwab FJ, Ames CP et al (2014) Radiographic outcomes of adult spinal deformity correction: a critical analysis of variability and failures across deformity patterns. Spine Deformity 2:219–225. doi: 10.1016/j.jspd.2014.01.003 CrossRefGoogle Scholar
  80. 80.
    Berjano P, Lamartina C (2013) Far lateral approaches (XLIF) in adult scoliosis. Eur Spine J 22(Suppl 2):S242–S253. doi: 10.1007/s00586-012-2426-5 PubMedCrossRefGoogle Scholar
  81. 81.
    Marsden CD, Duvoisin R (1980) Scoliosis and Parkinson’s disease. Arch Neurol 37:253–254PubMedCrossRefGoogle Scholar
  82. 82.
    Doherty KM, Van de Warrenburg BP, Peralta MC et al (2011) Postural deformities in Parkinson’s disease. Lancet Neurol 10:538–549. doi: 10.1016/S1474-4422(11)70067-9 PubMedCrossRefGoogle Scholar
  83. 83.
    Bourghli A, Guérin P, Vital J et al (2012) Posterior spinal fusion from T2 to the sacrum for the management of major deformities in patients with Parkinson disease: a retrospective review with analysis of complications. J Spinal Disord Tech 25:E53–E60. doi: 10.1097/BSD.0b013e3182496670 PubMedCrossRefGoogle Scholar
  84. 84.
    Babat LB, McLain RF, Bingaman W et al (2004) Spinal surgery in patients with Parkinson’s disease: construct failure and progressive deformity. Spine 29:2006–2012. doi: 10.1097/01.brs.0000138306.02425.21 PubMedCrossRefGoogle Scholar
  85. 85.
    Oh JK, Smith JS, Shaffrey CI et al (2014) Sagittal spinopelvic malalignment in Parkinson disease: prevalence and associations with disease severity. Spine 39:E833–E841. doi: 10.1097/BRS.0000000000000366 PubMedCrossRefGoogle Scholar
  86. 86.
    Maetzler W, Mancini M, Liepelt-Scarfone I et al (2012) Impaired trunk stability in individuals at high risk for Parkinson’s disease. PLoS ONE 7:e32240. doi: 10.1371/journal.pone.0032240 PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Lafage V, Schwab F, Vira S et al (2011) Spino-pelvic parameters after surgery can be predicted: a preliminary formula and validation of standing alignment. Spine 36:1037–1045PubMedCrossRefGoogle Scholar
  88. 88.
    Dubousset J, Charpak G, Dorion I et al (2005) A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system. Bulletin de l’Académie nationale de médecine 189:287–297 (discussion 297–300)PubMedGoogle Scholar
  89. 89.
    Newton PO, Fujimori T, Daan J et al (2014) 3D analysis: the truth about the “Hypokyphosing Effect of Pedicle Screws” in AIS. SRS 49th annual meetingGoogle Scholar
  90. 90.
    Dubousset J, Challier V, Farcy J-P et al (2014) Spinal alignment versus spinal balance. Global spinal alignment: principles, pathologies, and procedures bookGoogle Scholar
  91. 91.
    Moal B, Bronsard N, Raya JG et al (2014) Preliminary results on quantitative volume and fat infiltration of spino-pelvic musculature in adults with spinal deformity (unpublished data)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Bassel G. Diebo
    • 1
  • Jensen Henry
    • 1
  • Virginie Lafage
    • 1
  • Pedro Berjano
    • 2
  1. 1.New York University Langone Medical CenterNew YorkUSA
  2. 2.IRCCS Istituto Ortopedico GaleazziMilanItaly

Personalised recommendations