Advertisement

European Spine Journal

, Volume 23, Issue 11, pp 2359–2368 | Cite as

Intradiscal pressure depends on recent loading and correlates with disc height and compressive stiffness

  • Pieter-Paul A. Vergroesen
  • Albert J. van der Veen
  • Barend J. van Royen
  • Idsart Kingma
  • Theo H. Smit
Original Article

Abstract

Purpose

Intervertebral discs exhibit time-dependent deformation (creep), which could influence the relation between applied stress and intradiscal pressure. This study investigates the effect of prolonged dynamic loading on intradiscal pressure, disc height and compressive stiffness, and examines their mutual relationships.

Methods

Fifteen caprine lumbar discs with 5 mm of vertebral bone on either side were compressed by 1 Hz sinusoidal load for 4.5 h. After preload, ‘High’ (130 ± 20 N) or ‘Low’ (50 ± 10 N) loads were alternated every half hour. Continuous intradiscal pressure measurement was performed with a pressure transducer needle.

Results

Each disc showed a linear relationship between axial compression and intradiscal pressure (R 2 > 0.91). The intercept of linear regression analysis declined over time, but the gradient remained constant. Disc height changes were correlated to intradiscal pressure changes (R 2 > 0.98): both decreased during High loading, and increased during Low loading. In contrast, compressive stiffness increased during High loading, and was inversely related to intradiscal pressure and disc height.

Conclusions

Intradiscal pressure is influenced by recent loading due to fluid flow. The correlations found in this study suggest that intradiscal pressure is important for disc height and axial compliance. These findings are relevant for mechanobiology studies, nucleus replacements, finite element models, and ex vivo organ culture systems.

Keywords

Intervertebral disc Biomechanics Intradiscal pressure Fluid flow Hydrostatic pressure 

Notes

Acknowledgments

The authors thank Joost Meijering and Daniël Witte for their aid in performing the experiments, and Kaj Emanuel for proof reading the manuscript. TS acknowledges the support from ZonMW-VICI Grant 918.11.635.

Conflict of interest

None.

Supplementary material

586_2014_3450_MOESM1_ESM.tif (64.7 mb)
Supplementary material 1 (TIFF 66226 kb)
586_2014_3450_MOESM2_ESM.doc (26 kb)
Supplementary material 2 (DOC 25 kb)

References

  1. 1.
    (2011) Spine: low back and neck pain. In: Jacobs JJ (ed) United States Bone and Joint Decade: The Burden of Musculoskeletal Diseases in the United States. American Academy of Orthopaedic Surgeons, Rosemont, pp 21–56  Google Scholar
  2. 2.
    Lambeek LC, van Tulder MW, Swinkels ICS et al (2011) The trend in total cost of back pain in The Netherlands in the period 2002 to 2007. Spine (Phila Pa 1976) 36:1050–1058. doi: 10.1097/BRS.0b013e3181e70488 CrossRefGoogle Scholar
  3. 3.
    Murray CJL, Vos T, Lozano R et al (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2197–2223. doi: 10.1016/S0140-6736(12)61689-4 PubMedCrossRefGoogle Scholar
  4. 4.
    Cheung KMC, Karppinen J, Chan D et al (2009) Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine (Phila Pa 1976) 34:934–940. doi: 10.1097/BRS.0b013e3181a01b3f CrossRefGoogle Scholar
  5. 5.
    Wang Y, Videman T, Battié MC (2012) ISSLS prize winner: lumbar vertebral endplate lesions: associations with disc degeneration and back pain history. Spine (Phila Pa 1976) 37:1490–1496. doi: 10.1097/BRS.0b013e3182608ac4 CrossRefGoogle Scholar
  6. 6.
    Roy TC, Lopez HP, Piva SR (2013) Loads worn by soldiers predict episodes of low back pain during deployment to Afghanistan. Spine (Phila Pa 1976) 38:1310–1317. doi: 10.1097/BRS.0b013e31829265c4 CrossRefGoogle Scholar
  7. 7.
    Paul CPL, Schoorl T, Zuiderbaan HA et al (2013) Dynamic and static overloading induce early degenerative processes in caprine lumbar intervertebral discs. PLoS One 8:e62411. doi: 10.1371/journal.pone.0062411 PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Paul CPL, Zuiderbaan HA, Zandieh Doulabi B et al (2012) Simulated-physiological loading conditions preserve biological and mechanical properties of caprine lumbar intervertebral discs in ex vivo culture. PLoS One 7:e33147. doi: 10.1371/journal.pone.0033147 PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Wolff J (1892) Das Gesetz der transformation der Knochen. August Hirschwald, BerlinGoogle Scholar
  10. 10.
    Chan SCW, Ferguson SJ, Gantenbein-Ritter B (2011) The effects of dynamic loading on the intervertebral disc. Eur Spine J 20:1796–1812. doi: 10.1007/s00586-011-1827-1 PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Hsieh AH, Twomey JD (2010) Cellular mechanobiology of the intervertebral disc: new directions and approaches. J Biomech 43:137–145. doi: 10.1016/j.jbiomech.2009.09.019 PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Adams MA, Dolan P, McNally DS (2009) The internal mechanical functioning of intervertebral discs and articular cartilage, and its relevance to matrix biology. Matrix Biol 28:384–389. doi: 10.1016/j.matbio.2009.06.004 PubMedCrossRefGoogle Scholar
  13. 13.
    Wang D-L, Jiang S-D, Dai L-Y (2007) Biologic response of the intervertebral disc to static and dynamic compression in vitro. Spine (Phila Pa 1976) 32:2521–2528. doi: 10.1097/BRS.0b013e318158cb61 CrossRefGoogle Scholar
  14. 14.
    Haglund L, Moir J, Beckman L et al (2011) Development of a bioreactor for axially loaded intervertebral disc organ culture. Tissue Eng Part C Methods 17:1011–1019. doi: 10.1089/ten.TEC.2011.0025 PubMedCrossRefGoogle Scholar
  15. 15.
    Korecki CL, MacLean JJ, Iatridis JC (2008) Dynamic compression effects on intervertebral disc mechanics and biology. Spine (Phila Pa 1976) 33:1403–1409. doi: 10.1097/BRS.0b013e318175cae7 CrossRefGoogle Scholar
  16. 16.
    Hartman RA, Bell KM, Debski RE et al (2012) Novel ex vivo mechanobiological intervertebral disc culture system. J Biomech 45:382–385. doi: 10.1016/j.jbiomech.2011.10.036 PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Ekström L, Holm S, Holm AK, Hansson T (2004) In vivo porcine intradiscal pressure as a function of external loading. J Spinal Disord Tech 17:312–316PubMedCrossRefGoogle Scholar
  18. 18.
    Nachemson AL, Morris JM (1964) In vivo measurements of intradiscal pressure. Discometry, a method for the determination of pressure in the lower lumbar discs. J Bone Joint Surg Am 46:1077–1092PubMedGoogle Scholar
  19. 19.
    Berkson MH (1977) Mechanical properties of the human lumbar spine flexibilities, intradiscal pressures, posterior element influences. Proc Inst Med Chic 31:138–143PubMedGoogle Scholar
  20. 20.
    Sato K, Kikuchi S, Yonezawa T (1999) In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine (Phila Pa 1976) 24:2468–2474CrossRefGoogle Scholar
  21. 21.
    Wilke HJ, Neef P, Caimi M et al (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine (Phila Pa 1976) 24:755–762CrossRefGoogle Scholar
  22. 22.
    Nachemson AL (1981) Disc pressure measurements. Spine (Phila Pa 1976) 6:93–97CrossRefGoogle Scholar
  23. 23.
    Handa T, Ishihara H, Ohshima H et al (1997) Effects of hydrostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc. Spine (Phila Pa 1976) 22:1085–1091CrossRefGoogle Scholar
  24. 24.
    Ishihara H, McNally DS, Urban JP, Hall AC (1996) Effects of hydrostatic pressure on matrix synthesis in different regions of the intervertebral disk. J Appl Physiol 80:839–846PubMedGoogle Scholar
  25. 25.
    Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976) 31:2151–2161. doi: 10.1097/01.brs.0000231761.73859.2c CrossRefGoogle Scholar
  26. 26.
    Reitmaier S, Wolfram U, Ignatius A et al (2012) Hydrogels for nucleus replacement–facing the biomechanical challenge. J Mech Behav Biomed Mater 14:67–77. doi: 10.1016/j.jmbbm.2012.05.010 PubMedCrossRefGoogle Scholar
  27. 27.
    Van der Veen AJ, Bisschop A, Mullender MG, van Dieën JH (2013) Modelling creep behaviour of the human intervertebral disc. J Biomech 46:2101–2103. doi: 10.1016/j.jbiomech.2013.05.026 PubMedCrossRefGoogle Scholar
  28. 28.
    Masuoka K, Michalek AJ, MacLean JJ et al (2007) Different effects of static versus cyclic compressive loading on rat intervertebral disc height and water loss in vitro. Spine (Phila Pa 1976) 32:1974–1979. doi: 10.1097/BRS.0b013e318133d591 CrossRefGoogle Scholar
  29. 29.
    Van der Veen AJ, Mullender MG, Kingma I et al (2008) Contribution of vertebral [corrected] bodies, endplates, and intervertebral discs to the compression creep of spinal motion segments. J Biomech 41:1260–1268. doi: 10.1016/j.jbiomech.2008.01.010 PubMedCrossRefGoogle Scholar
  30. 30.
    Reitmaier S, Schmidt H, Ihler R et al (2013) Preliminary investigations on intradiscal pressures during daily activities: an in vivo study using the merino sheep. PLoS One 8:e69610. doi: 10.1371/journal.pone.0069610 PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Van der Veen AJ, van Dieën JH, Nadort A et al (2007) Intervertebral disc recovery after dynamic or static loading in vitro: is there a role for the endplate? J Biomech 40:2230–2235. doi: 10.1016/j.jbiomech.2006.10.018 PubMedCrossRefGoogle Scholar
  32. 32.
    Tyrrell AR, Reilly T, Troup JD (1985) Circadian variation in stature and the effects of spinal loading. Spine (Phila Pa 1976) 10:161–164CrossRefGoogle Scholar
  33. 33.
    Van der Veen AJ, Mullender M, Smit TH et al (2005) Flow-related mechanics of the intervertebral disc: the validity of an in vitro model. Spine (Phila Pa 1976) 30:E534–E539CrossRefGoogle Scholar
  34. 34.
    Lotz JC (2004) Animal models of intervertebral disc degeneration: lessons learned. Spine (Phila Pa 1976) 29:2742–2750CrossRefGoogle Scholar
  35. 35.
    Kingma I, Meijer R, Layla H et al (2001) Stress distribution changes in bovine vertebrae just below the endplate after sustained loading. Clin Biomech (Bristol, Avon) 16 Suppl 1:135–142Google Scholar
  36. 36.
    Adams MA, McMillan DW, Green TP, Dolan P (1996) Sustained loading generates stress concentrations in lumbar intervertebral discs. Spine (Phila Pa 1976) 21:434–438CrossRefGoogle Scholar
  37. 37.
    Brinckmann P, Grootenboer H, Brickmann P (1991) Change of disc height, radial disc bulge, and intradiscal pressure from discectomy. An in vitro investigation on human lumbar discs. Spine (Phila Pa 1976) 16:641–646CrossRefGoogle Scholar
  38. 38.
    Ranu HS (1990) Measurement of pressures in the nucleus and within the annulus of the human spinal disc: due to extreme loading. Proc Inst Mech Eng H 204:141–146PubMedCrossRefGoogle Scholar
  39. 39.
    Bron JL, van der Veen AJ, Helder MN et al (2010) Biomechanical and in vivo evaluation of experimental closure devices of the annulus fibrosus designed for a goat nucleus replacement model. Eur Spine J 19:1347–1355. doi: 10.1007/s00586-010-1384-z PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Buttermann GR, Beaubien BP, Saeger LC (2009) Mature runt cow lumbar intradiscal pressures and motion segment biomechanics. Spine J 9:105–114. doi: 10.1016/j.spinee.2007.09.006 PubMedCrossRefGoogle Scholar
  41. 41.
    Smit TH (2002) The use of a quadruped as an in vivo model for the study of the spine—biomechanical considerations. Eur Spine J 11:137–144. doi: 10.1007/s005860100346 PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Hoogendoorn RJW, Helder MN, Kroeze RJ et al (2008) Reproducible long-term disc degeneration in a large animal model. Spine (Phila Pa 1976) 33:949–954. doi: 10.1097/BRS.0b013e31816c90f0 CrossRefGoogle Scholar
  43. 43.
    Krijnen MR, Mensch D, van Dieen JH et al (2006) Primary spinal segment stability with a stand-alone cage: in vitro evaluation of a successful goat model. Acta Orthop 77:454–461. doi: 10.1080/17453670610046398 PubMedCrossRefGoogle Scholar
  44. 44.
    Pollintine P, Przybyla AS, Dolan P, Adams MA (2004) Neural arch load-bearing in old and degenerated spines. J Biomech 37:197–204. doi: 10.1016/S0021-9290(03)00308-7 PubMedCrossRefGoogle Scholar
  45. 45.
    Claus A, Hides J, Moseley GL, Hodges P (2008) Sitting versus standing: does the intradiscal pressure cause disc degeneration or low back pain? J Electromyogr Kinesiol 18:550–558. doi: 10.1016/j.jelekin.2006.10.011 PubMedCrossRefGoogle Scholar
  46. 46.
    Nachemson A (1966) The load on lumbar disks in different positions of the body. Clin Orthop Relat Res 45:107–122PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Pieter-Paul A. Vergroesen
    • 1
  • Albert J. van der Veen
    • 2
  • Barend J. van Royen
    • 1
  • Idsart Kingma
    • 3
  • Theo H. Smit
    • 1
  1. 1.Department of Orthopaedic Surgery, MOVE Research Institute AmsterdamVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Department of Physics and Medical Technology, MOVE Research Institute AmsterdamVU University Medical CenterAmsterdamThe Netherlands
  3. 3.Faculty of Human Movement Sciences, MOVE Research Institute AmsterdamVU University AmsterdamAmsterdamThe Netherlands

Personalised recommendations