European Spine Journal

, Volume 24, Issue 3, pp 533–542 | Cite as

Intrawound vancomycin to prevent infections after spine surgery: a systematic review and meta-analysis

  • Nathan Evaniew
  • Moin Khan
  • Brian Drew
  • Devin Peterson
  • Mohit Bhandari
  • Michelle Ghert
Original Article



Post-operative spine surgical site infections are associated with substantial morbidity, mortality, and economic burden. Intrawound vancomycin may prevent infections after spine surgery, but recent studies have reported conflicting results. The objectives of this systematic review and meta-analysis were to determine: (1) In patients undergoing spine surgery, does the application of intrawound vancomycin lead to reduced rates of post-operative surgical site infections? (2) Are there differences in the estimates of effect between observational studies and randomized trials? (3) What adverse events are reported in the literature?


All published comparative studies of intrawound vancomycin in spine surgery were included. Two reviewers independently screened eligible articles and assessed study quality. Observational studies and randomized trials were pooled separately using a random-effects model.


Eight observational studies and one randomized controlled trial met the inclusion criteria. Across observational studies, the odds of infection with intrawound vancomycin was 0.19 times the odds of infection without intrawound vancomycin (95 % CI 0.08–0.47, p = 0.0003, I 2 = 52 %). The single randomized controlled trial produced a conflicting result (OR 0.96, 95 % CI 0.34–2.66, p = 0.93). There were no adverse events attributable to intrawound vancomycin. The quality of the evidence was low or very low.


There is a lack of high-quality evidence to inform the use of intrawound vancomycin in spine surgery. Surgeons should be cautious before widely adopting this intervention and should be vigilant in monitoring for adverse effects. Further investigation with additional randomized controlled trials is justified.


Intrawound vancomycin Infection Spine Evidence-based medicine Randomized trials 



This study was not funded. Dr. Bhandari is funded, in part, by a Canada Research Chair.

Conflict of interest

The authors certify that they, or a member of their immediate families, have no funding or commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article.

Ethical approval

This study did not require local institutional ethics board approval.


  1. 1.
    Perencevich EN, Sands KE, Cosgrove SE, Guadagnoli E, Meara E, Platt R (2003) Health and economic impact of surgical site infections diagnosed after hospital discharge. Emerg Infect Dis 9(2):196–203CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Kirkland KB, Briggs JP, Trivette SL, Wilkinson WE, Sexton DJ (1999) The impact of surgical-site infections in the 1990s: attributable mortality, excess length of hospitalization, and extra costs. Infect Control Hosp Epidemiol 20(11):725–730CrossRefPubMedGoogle Scholar
  3. 3.
    Fry DE (2002) The economic costs of surgical site infection. Surg Infect (Larchmt) 3(Suppl 1):S37–S43CrossRefGoogle Scholar
  4. 4.
    Sasso RC, Garrido BJ (2008) Postoperative spinal wound infections. J Am Acad Orthop Surg 16(6):330–337PubMedGoogle Scholar
  5. 5.
    ter Gunne AFP, Cohen DB (2009) Incidence, prevalence, and analysis of risk factors for surgical site infection following adult spinal surgery. Spine (Phila Pa 1976) 34(13):1422–1428CrossRefGoogle Scholar
  6. 6.
    Gerometta A, Olaverri JCR, Bitan F (2012) Infections in spinal instrumentation. Int Orthop 36(2):457–464CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Lazennec J-Y, Fourniols E, Lenoir T, Aubry A, Pissonnier ML, Issartel B, Rousseau MA, French Spine Surgery Society (2011) Infections in the operated spine: Update on risk management and therapeutic strategies. Orthop Traumatol Surg Res 97(6 SUPPL):S107–S116CrossRefPubMedGoogle Scholar
  8. 8.
    Werner BC, Shen FH, Shimer AL (2011) Infections after lumbar spine surgery: avoidance and treatment. Semin Spine Surg 23(2):142–150CrossRefGoogle Scholar
  9. 9.
    Savage JW, Anderson PA (2013) An update on modifiable factors to reduce the risk of surgical site infections. Spine J 13(9):1017–1029CrossRefPubMedGoogle Scholar
  10. 10.
    Molinari RW, Khera OA, Molinari WJ 3rd (2012) Prophylactic intraoperative powdered vancomycin and postoperative deep spinal wound infection: 1,512 consecutive surgical cases over a 6-year period. Eur Spine J 21(Suppl 4):S476–S482CrossRefPubMedGoogle Scholar
  11. 11.
    O’Neill K, Smith J, Abtahi A, Archer KR, Spengler DM, McGirt M, Devin CJ (2011) Reduced surgical site infections in patients undergoing posterior spinal stabilization of traumatic injuries using vancomycin powder. Spine J 11(7):641–646CrossRefPubMedGoogle Scholar
  12. 12.
    Zebala LP, Chuntarapas T, Kelly MP, Talcott M, Greco S, Riew KD (2014) Intrawound vancomycin powder eradicates surgical wound contamination: an in vivo rabbit study. J Bone Jt Surg Am 96(1):46–51CrossRefGoogle Scholar
  13. 13.
    Vitale MG, Riedel MD, Glotzbecker MP, Matsumoto H, Roye DP, Akbarnia BA, Anderson RC, Brockmeyer DL, Emans JB, Erickson M, Flynn JM, Lenke LG, Lewis SJ, Luhmann SJ, McLeod LM, Newton PO, Nyquist AC, Richards BS 3rd, Shah SA, Skaggs DL, Smith JT, Sponseller PD, Sucato DJ, Zeller RD, Saiman L (2013) Building consensus: development of a best practice guideline (BPG) for surgical site infection (SSI) prevention in high-risk pediatric spine surgery. J Pediatr Orthop 33(5):471–478CrossRefPubMedGoogle Scholar
  14. 14.
    Glotzbecker MP, Vitale MG, Shea KG, Flynn JM (2013) Surgeon practices regarding infection prevention for pediatric spinal surgery. J Pediatr Orthop 33(7):694–699CrossRefPubMedGoogle Scholar
  15. 15.
    Gans I, Dormans JP, Spiegel DA, Flynn JM, Sankar WN, Campbell RM, Baldwin KD (2013) Adjunctive vancomycin powder in pediatric spine surgery is safe. Spine (Phila Pa 1976) 38:1703–1707CrossRefGoogle Scholar
  16. 16.
    Godil SS, Parker SL, O’Neill KR, Devin CJ, McGirt MJ (2013) Comparative effectiveness and cost-benefit analysis of local application of vancomycin powder in posterior spinal fusion for spine trauma: clinical article. J Neurosurg Spine 19(3):331–335CrossRefPubMedGoogle Scholar
  17. 17.
    Mariappan R, Manninen P, Massicotte EM, Bhatia A (2013) Circulatory collapse after topical application of vancomycin powder during spine surgery case report. J Neurosurg Spine 19(3):381–383CrossRefPubMedGoogle Scholar
  18. 18.
    Patrick BN, Rivey MP, Allington DR (2006) Acute renal failure associated with vancomycin- and tobramycin-laden cement in total hip arthroplasty. Ann Pharmacother 40(11):2037–2042CrossRefPubMedGoogle Scholar
  19. 19.
    Rathbone CR, Cross JD, Brown KV, Murray CK, Wenke JC (2011) Effect of various concentrations of antibiotics on osteogenic cell viability and activity. J Orthop Res 29(7):1070–1074CrossRefPubMedGoogle Scholar
  20. 20.
    Tubaki VR, Rajasekaran S, Shetty AP (2013) Effects of using intravenous antibiotic only versus local intrawound vancomycin antibiotic powder application in addition to intravenous antibiotics on postoperative infection in spine surgery in 907 patients. Spine (Phila Pa 1976) 38(25):2149–2155CrossRefGoogle Scholar
  21. 21.
    Martin JR, Adogwa O, Brown CR, Bagley CA, Richardson WJ, Lad SP, Kuchibhatla M, Gottfried ON (2013) Experience with intrawound vancomycin powder for spinal deformity surgery. Spine (Phila Pa 1976) 39:177–184CrossRefGoogle Scholar
  22. 22.
    Chiang HY, Herwaldt LA, Blevins AE, Cho E, Schweizer ML (2014) Effectiveness of local vancomycin powder to decrease surgical site infections: a meta-analysis. Spine J 14(3):397–407CrossRefPubMedGoogle Scholar
  23. 23.
    Chiang HY, Herwaldt L, Schweizer M (2014) Reply to “letter to the editor” by baker and chen regarding “effectiveness of local vancomycin powder to decrease surgical site infections: A meta-analysis”. Spine J [Epub ahead of print]Google Scholar
  24. 24.
    Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62(10):1006–1012CrossRefPubMedGoogle Scholar
  25. 25.
    Higgins JPT, Greene S (2011) Cochrane handbook for systematic reviews of interventions. In: Higgins JPT and Greene S (eds). The cochrane collaboration, version 5.1.0 edGoogle Scholar
  26. 26.
    Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J (2003) Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg 73(9):712–716CrossRefPubMedGoogle Scholar
  27. 27.
    Sackett D, Haynes R, Guyatt G, Tugwell P (1991) Clinical epidemiology: a basic science for clinicians, 2nd edn. Little Brown, BostonGoogle Scholar
  28. 28.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174CrossRefPubMedGoogle Scholar
  29. 29.
    Bhandari M, Morshed S, Tornetta P 3rd (2009) Schemitsch EH. Design, conduct, and interpretation of nonrandomized orthopaedic studies: a practical approach. (all) evidence matters. J Bone Jt Surg Am 91(Suppl 3):1CrossRefGoogle Scholar
  30. 30.
    Bhandari M, Tornetta P 3rd, Schemitsch EH (2012) Randomized trials in orthopaedic surgery: one step closer. J Bone Jt Surg Am 94(Suppl 1):1CrossRefGoogle Scholar
  31. 31.
    Hoppe DJ, Schemitsch EH, Morshed S, Tornetta P 3rd, Bhandari M (2009) Hierarchy of evidence: where observational studies fit in and why we need them. J Bone Jt Surg Am 91(Suppl 3):2–9CrossRefGoogle Scholar
  32. 32.
    Guyatt GH, Sackett DL, Cook DJ (1993) Users’ guides to the medical literature. II. How to use an article about therapy or prevention. A. Are the results of the study valid? Evidence-based medicine working group. JAMA 270(21):2598–2601CrossRefPubMedGoogle Scholar
  33. 33.
    Petrisor B, Jeray K, Schemitsch E, Hanson B, Sprague S, Sanders D, Bhandari M, FLOW Investigators (2008) Fluid lavage in patients with open fracture wounds (FLOW): An international survey of 984 surgeons. BMC Musculoskelet Disord 9:7CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, Norris S, Falck-Ytter Y, Glasziou P, DeBeer H, Jaeschke R, Rind D, Meerpohl J, Dahm P, Schünemann HJ (2011) GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 64(4):383–394CrossRefPubMedGoogle Scholar
  35. 35.
    Balshem H, Helfand M, Schunemann HJ, Oxman AD, Kunz R, Brozek J, Vist GE, Falck-Ytter Y, Meerpohl J, Norris S, Guyatt GH (2011) GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 64(4):401–406CrossRefPubMedGoogle Scholar
  36. 36.
    Caroom C, Tullar JM, Benton EG Jr, Jones JR, Chaput CD (2013) Intrawound vancomycin powder reduces surgical site infections in posterior cervical fusion. Spine 38(14):1183–1187CrossRefPubMedGoogle Scholar
  37. 37.
    Heller A, McIff TE, Lai SM, Burton DC (2013) Intrawound vancomycin powder decreases staphylococcal surgical site infections following posterior instrumented spinal arthrodesis. J Spinal Disord Tech [Epub ahead of print]Google Scholar
  38. 38.
    Pahys JM, Pahys JR, Cho SK, Kang MM, Zebala LP, Hawasli AH, Sweet FA, Lee DH, Riew KD (2013) Methods to decrease postoperative infections following posterior cervical spine surgery. J Bone Jt Surg Am 95(6):549–554CrossRefGoogle Scholar
  39. 39.
    Strom RG, Pacione D, Kalhorn SP, Frempong-Boadu AK (2013) Lumbar laminectomy and fusion with routine local application of vancomycin powder: decreased infection rate in instrumented and non-instrumented cases. Clin Neurol Neurosurg 115(9):1766–1769CrossRefPubMedGoogle Scholar
  40. 40.
    Strom RG, Pacione D, Kalhorn SP, Frempong-Boadu AK (2013) Decreased risk of wound infection after posterior cervical fusion with routine local application of vancomycin powder. Spine 38(12):991–994CrossRefPubMedGoogle Scholar
  41. 41.
    Sweet FA, Roh M, Sliva C (2011) Intrawound application of vancomycin for prophylaxis in instrumented thoracolumbar fusions: efficacy, drug levels, and patient outcomes. Spine 36(24):2084–2088CrossRefPubMedGoogle Scholar
  42. 42.
    Walsh M, Srinathan SK, McAuley DF, Mrkobrada M, Levine O, Ribic C, Molnar AO, Dattani ND, Burke A, Guyatt G, Thabane L, Walter SD, Pogue J, Devereaux PJ (2014) The statistical significance of randomized controlled trial results is frequently fragile: A case for a fragility index. J Clin Epidemiol 67(6):622–628Google Scholar
  43. 43.
    Guyatt GH, Oxman AD, Kunz R, Brozek J, Alonso-Coello P, Rind D, Devereaux PJ, Montori VM, Freyschuss B, Vist G, Jaeschke R, Williams JW Jr, Murad MH, Sinclair D, Falck-Ytter Y, Meerpohl J, Whittington C, Thorlund K, Andrews J, Schünemann HJ (2011) GRADE guidelines 6. Rating the quality of evidence–imprecision. J Clin Epidemiol 64(12):1283–1293CrossRefPubMedGoogle Scholar
  44. 44.
    Caroom C, Chaput CD, Tullar J, Jones J (2012) Reduced surgical site infections in patients with cervical spondylotic myelopathy undergoing posterior cervical instrumented fusion using vancomycin powder and chlorhexadine skin preparation. Spine J. Conference: 27th Annual Meeting of the North American Spine Society, NASS 2012 Dallas, TX United States. Conference Start: 20121024 Conference End: 20121027. Conference Publication: (var.pagings) 12(9 SUPPL. 1):80SGoogle Scholar
  45. 45.
    Dewan MC, Godil SS, Zuckerman SL, Mendenhall SK, Shau DN, Parker SL, Devin CJ, McGirt MJ (2013) Comparative effectiveness and cost-benefit analysis of topical vancomycin powder in posterior spinal fusion for spine trauma and degenerative spine disease. Spine J. Conference: 28th Annual Meeting of the North American Spine Society, NASS 2013 New Orleans, LA United States. Conference Start: 20131009 Conference End: 20131012. Conference Publication: (var.pagings). 13(9 SUPPL. 1):56SGoogle Scholar
  46. 46.
    Vancomycin in spine surgery [Internet]. 2013. Available from:
  47. 47.
    Comparative effectiveness and cost-benefit analysis of vancomycin powder in high risk spine surgery patients [Internet]. 2013. Available from:
  48. 48.
    Edin ML, Miclau T, Lester GE, Lindsey RW, Dahners LE (1996) Effect of cefazolin and vancomycin on osteoblasts in vitro. Clin Orthop Relat Res (333):245–251Google Scholar
  49. 49.
    Bhandari M, Giannoudis PV (2006) Evidence-based medicine: what it is and what it is not. Injury 37(4):302–306CrossRefPubMedGoogle Scholar
  50. 50.
    Benson K, Hartz AJ (2000) A comparison of observational studies and randomized, controlled trials. N Engl J Med 342(25):1878–1886CrossRefPubMedGoogle Scholar
  51. 51.
    Concato J, Shah N, Horwitz RI (2000) Randomized, controlled trials, observational studies, and the hierarchy of research designs. N Engl J Med 342(25):1887–1892CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Kunz R, Oxman AD (1998) The unpredictability paradox: review of empirical comparisons of randomised and non-randomised clinical trials. BMJ 317(7167):1185–1190CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Ioannidis JP, Haidich AB, Pappa M, Pantazis N, Kokori SI, Tektonidou MG, Contopoulos-Ioannidis DG, Lau J (2001) Comparison of evidence of treatment effects in randomized and nonrandomized studies. JAMA 286(7):821–830CrossRefPubMedGoogle Scholar
  54. 54.
    Devereaux PJ, Yusuf S (2003) The evolution of the randomized controlled trial and its role in evidence-based decision making. J Intern Med 254(2):105–113CrossRefPubMedGoogle Scholar
  55. 55.
    Echt DS, Liebson PR, Mitchell LB, Peters RW, Obias-Manno D, Barker AH et al (1991) Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The cardiac arrhythmia suppression trial. N Engl J Med 324(12):781–788CrossRefPubMedGoogle Scholar
  56. 56.
    Moore TJ (1995) Excess mortality estimates: dearly medicine: why tens of thousands of heart patients died in America’s worst drug disaster. Simon & Shuster, New YorkGoogle Scholar
  57. 57.
    Stampfer MJ, Colditz GA (1991) Estrogen replacement therapy and coronary heart disease: a quantitative assessment of the epidemiologic evidence. Prev Med 20(1):47–63CrossRefPubMedGoogle Scholar
  58. 58.
    Hulley S, Grady D, Bush T, Furberg C, Herrington D, Riggs B, Vittinghoff E (1998) Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. heart and estrogen/progestin replacement study (HERS) research group. JAMA 280(7):605–613CrossRefPubMedGoogle Scholar
  59. 59.
    Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML et al (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the women’s health initiative randomized controlled trial. JAMA 288(3):321–333CrossRefPubMedGoogle Scholar
  60. 60.
    Reichenbach S, Rutjes AW, Nuesch E, Trelle S, Juni P (2010) Joint lavage for osteoarthritis of the knee. Cochrane Database Syst Rev 12(5):CD007320Google Scholar
  61. 61.
    Popp AJ, Chater N (1977) Extracranial to intracranial vascular anastomosis for occlusive cerebrovascular disease: experience in 110 patients. Surgery 82(5):648–654PubMedGoogle Scholar
  62. 62.
    The EC/IC Bypass Study Group (1985) Failure of extracranial-intracranial arterial bypass to reduce the risk of ischemic stroke. Results of an international randomized trial. N Engl J Med 313(19):1191–1200Google Scholar
  63. 63.
    Dowrick AS, Bhandari M (2012) Ethical issues in the design of randomized trials: to sham or not to sham. J Bone Jt Surg Am 18(94 Suppl 1):7–10CrossRefGoogle Scholar
  64. 64.
    Petignat C, Francioli P, Harbarth S, Regli L, Porchet F, Reverdin A, Rilliet B, de Tribolet N, Pannatier A, Pittet D, Zanetti G (2008) Cefuroxime prophylaxis is effective in noninstrumented spine surgery: a double-blind, placebo-controlled study. Spine (Phila Pa 1976) 33(18):1919–1924CrossRefGoogle Scholar
  65. 65.
    Venkatesh M, Bairavi VG, Sasikumar KC (2011) Generic antibiotic industries: challenges and implied strategies with regulatory perspectives. J Pharm Bioallied Sci 3(1):101–108CrossRefPubMedCentralPubMedGoogle Scholar
  66. 66.
    Vesga O, Agudelo M, Salazar BE, Rodriguez CA, Zuluaga AF (2010) Generic vancomycin products fail in vivo despite being pharmaceutical equivalents of the innovator. Antimicrob Agents Chemother 54(8):3271–3279CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nathan Evaniew
    • 1
  • Moin Khan
    • 1
  • Brian Drew
    • 1
  • Devin Peterson
    • 1
  • Mohit Bhandari
    • 1
    • 2
  • Michelle Ghert
    • 1
  1. 1.Division of Orthopaedics, Department of SurgeryMcMaster UniversityHamiltonCanada
  2. 2.Department of Clinical Epidemiology and BiostatisticsMcMaster UniversityHamiltonCanada

Personalised recommendations