European Spine Journal

, Volume 23, Issue 5, pp 1109–1114 | Cite as

Is the 4 mm height of the vertebral artery groove really a limitation of C1 pedicle screw insertion?

  • Da-Geng Huang
  • Si-Min He
  • Jun-Wei Pan
  • Hua Hui
  • Hui-Min Hu
  • Bao-Rong He
  • Hui Li
  • Xue-Fang Zhang
  • Ding-Jun Hao
Original Article



To explore the feasibility and effectiveness of C1 pedicle screw fixation in patients whose atlas vertebral artery groove (defined as the C1 pedicle) height is less than 4 mm, but with a medullary canal.


From January 2010 to January 2013, 7 patients (6 males, 1 female) with atlantoaxial instability whose C1 pedicle height was less than 4.0 mm on one or both sides were treated by C1 pedicle screw fixation at our institution. Thirteen of the 14 C1 pedicles were less than 4.0 mm in height, but all had a medullary canal. Patients were followed up at regular intervals. Postoperative computed tomography (CT) scans were performed to assess if C1 pedicle screw placement was successful. Clinical outcomes were evaluated according to postoperative complications, the American Spinal Injury Association grading system, and bone graft status.


Thirteen C1 pedicles with a height less than 4.0 mm were inserted by 13 3.5- or 4.0-mm-diameter pedicle screws, and one C1 pedicle whose height was 4.1 mm was inserted by a 4.0-mm-diameter pedicle screw. In addition, 14 pedicle screws were inserted in the axis. The mean follow-up period was 23 (range 8–38) months. No neurologic or vascular complications occurred in any of the seven patients. Postoperative CT three-dimensional reconstruction images showed that all 14 pedicle screws were inserted in the C1 pedicles without destruction of the atlas pedicle cortical bone. All patients demonstrated bony fusion 6 months postoperatively.


If there is a medullary canal in the C1 pedicle, a 3.5- or 4.0-mm-diameter pedicle screw can be safely inserted into the atlas and C1 pedicle screw fixation can be performed without any impact on fixation stability and clinical efficacy, even if the C1 pedicle height is less than 4.0 mm.


Atlantoaxial instability Atlas Pedicle screw 



This work was supported by the Natural Science Foundation of China (Grants No. 81071486).

Conflict of interest



  1. 1.
    Elliott RE, Tanweer O, Smith ML, Frempong-Boadu A (2013) Impact of starting point and bicortical purchase of C1 lateral mass screws on atlantoaxial fusion: meta-analysis and review of the literature. J Spinal Disord Tech. doi:10.1097/BSD.0b013e31828ffc97 Google Scholar
  2. 2.
    Ma XY, Yin QS, Wu ZH, Xia H, Liu JF, Xiang M, Zhao WD, Zhong SZ (2009) C1 pedicle screws versus C1 lateral mass screws: comparisons of pullout strengths and biomechanical stabilities. Spine (Phila Pa 1976) 34:371–377. doi:10.1097/BRS.0b013e318193a21b CrossRefGoogle Scholar
  3. 3.
    Tan M, Wang H, Wang Y, Zhang G, Yi P, Li Z, Wei H, Yang F (2003) Morphometric evaluation of screw fixation in atlas via posterior arch and lateral mass. Spine (Phila Pa 1976) 28:888–895. doi:10.1097/01.BRS.0000058719.48596.CC Google Scholar
  4. 4.
    Yeom JS, Kafle D, Nguyen NQ, Noh W, Park KW, Chang BS, Lee CK, Riew KD (2012) Routine insertion of the lateral mass screw via the posterior arch for C1 fixation: feasibility and related complications. Spine J 12:476–483. doi:10.1016/j.spinee.2012.06.010 PubMedCrossRefGoogle Scholar
  5. 5.
    Resnick DK, Benzel EC (2002) C1–C2 pedicle screw fixation with rigid cantilever beam construct: case report and technical note. Neurosurgery 50:426–428PubMedGoogle Scholar
  6. 6.
    Ma XY, Yin QS, Wu ZH, Xia H, Liu JF, Zhong SZ (2005) Anatomic considerations for the pedicle screw placement in the first cervical vertebra. Spine (Phila Pa 1976) 30:1519–1523CrossRefGoogle Scholar
  7. 7.
    Christensen DM, Eastlack RK, Lynch JJ, Yaszemski MJ, Currier BL (2007) C1 anatomy and dimensions relative to lateral mass screw placement. Spine (Phila Pa 1976) 32:844–848. doi:10.1097/01.brs.0000259833.02179.c0 CrossRefGoogle Scholar
  8. 8.
    Lin JM, Hipp JA, Reitman CA (2013) C1 lateral mass screw placement via the posterior arch: a technique comparison and anatomic analysis. Spine J. doi:10.1016/j.spinee.2013.06.006 Google Scholar
  9. 9.
    Kim JH, Kwak DS, Han SH, Cho SM, You SH, Kim MK (2013) Anatomic consideration of the C1 laminar arch for lateral mass screw fixation via C1 lateral lamina: a landmark between the lateral and posterior lamina of the C1. J Korean Neurosurg Soc 54:25–29. doi:10.3340/jkns.2013.54.1.25 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Gebauer M, Barvencik F, Briem D, Kolb JP, Seitz S, Rueger JM, Puschel K, Amling M (2010) Evaluation of anatomic landmarks and safe zones for screw placement in the atlas via the posterior arch. Eur Spine J 19:85–90. doi:10.1007/s00586-009-1181-8 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Blagg SE, Don AS, Robertson PA (2009) Anatomic determination of optimal entry point and direction for C1 lateral mass screw placement. J Spinal Disord Tech 22:233–239. doi:10.1097/BSD.0b013e31817ff95a PubMedCrossRefGoogle Scholar
  12. 12.
    Lee MJ, Cassinelli E, Riew KD (2006) The feasibility of inserting atlas lateral mass screws via the posterior arch. Spine (Phila Pa 1976) 31:2798–2801. doi:10.1097/01.brs.0000245902.93084.12 CrossRefGoogle Scholar
  13. 13.
    Qian LX, Hao DJ, He BR, Jiang YH (2013) Morphology of the atlas pedicle revisited: a morphometric CT-based study on 120 patients. Eur Spine J 22:1142–1146. doi:10.1007/s00586-013-2662-3 PubMedCrossRefGoogle Scholar
  14. 14.
    Wang J, Xia H, Ying Q, Lu Y, Wu Z, Ai F, Ma X (2013) An anatomic consideration of C2 vertebrae artery groove variation for individual screw implantation in axis. Eur Spine J 22:1547–1552. doi:10.1007/s00586-013-2779-4 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Goel A, Laheri V (1994) Plate and screw fixation for atlanto-axial subluxation. Acta Neurochir (Wien) 129:47–53CrossRefGoogle Scholar
  16. 16.
    Harms J, Melcher RP (2001) Posterior C1–C2 fusion with polyaxial screw and rod fixation. Spine (Phila Pa 1976) 26:2467–2471CrossRefGoogle Scholar
  17. 17.
    Geck MJ, Truumees E, Hawthorne D, Singh D, Stokes JK, Flynn A (2013) Feasibility of rigid upper cervical instrumentation in children: tomographic analysis of children aged 2–6. J Spinal Disord Tech. doi:10.1097/BSD.0b013e318291ce46 PubMedGoogle Scholar
  18. 18.
    Padua MR, Yeom JS, Em HT, Kim HJ, Chang BS, Lee CK, Riew KD (2013) Feasibility of laminar screw placement in the upper thoracic spine: analysis using 3-dimensional computed tomographic simulation. Spine (Phila Pa 1976) 38:1146–1153. doi:10.1097/BRS.0b013e31828aadf5 CrossRefGoogle Scholar
  19. 19.
    Sjostrom L, Jacobsson O, Karlstrom G, Pech P, Rauschning W (1993) CT analysis of pedicles and screw tracts after implant removal in thoracolumbar fractures. J Spinal Disord 6:225–231PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Da-Geng Huang
    • 1
  • Si-Min He
    • 1
  • Jun-Wei Pan
    • 1
  • Hua Hui
    • 1
  • Hui-Min Hu
    • 1
  • Bao-Rong He
    • 1
  • Hui Li
    • 1
  • Xue-Fang Zhang
    • 1
  • Ding-Jun Hao
    • 1
  1. 1.Department of Spine SurgeryHonghui Hospital, Xi’an Jiaotong University College of MedicineXi’anPeople’s Republic of China

Personalised recommendations