Skip to main content
Log in

Biomechanical effects of cervical arthroplasty with U-shaped disc implant on segmental range of motion and loading of surrounding soft tissue

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Various design concepts have been adopted in cervical disc prostheses, including sliding articulation and standalone configuration. This study aimed to evaluate the biomechanical effects of the standalone U-shaped configuration on the cervical spine.

Methods

Based on an intact finite element model of C3–C7, a standalone U-shaped implant (DCI) was installed at C5–C6 and compared with a sliding articulation design (Prodisc-C) and an anterior fusion system. The range of motion (ROM), adjacent intradiscal pressure (IDP) and capsular ligament strain were calculated under different spinal motions.

Results

Compared to the intact configuration, the ROM at C5–C6 was reduced by 90 % after fusion, but increased by 70 % in the Prodisc-C model, while the maximum percentage change in the DCI model was 30 % decrease. At the adjacent segments, up to 32 % increase in ROM happened after fusion, while up to 34 % decrease occurred in Prodisc-C model and 17 % decrease in DCI model. The IDP increased by 11.6 % after fusion, but decreased by 5.6 and 6.3 % in the DCI and Prodisc-C model, respectively. The capsular ligament strain increased by 147 % in Prodisc-C and by 13 % in the DCI model. The DCI implant exhibited a high stress distribution.

Conclusions

Spinal fusion resulted in compensatory increase of ROM at the adjacent sites, thereby elevating the IDP. Prodisc-C resulted in hyper-mobility at the operative site that led to an increase of ligament force and strain. The U-shaped implant could maintain the spinal kinematics and impose minimum influence on the adjacent soft tissues, despite the standalone configuration encountering the disadvantages of high stress distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Matsumoto M, Okada E, Ichihara D, Watanabe K, Chiba K, Toyama Y (2010) Adjacent segment disease and degeneration after anterior cervical decompression and fusion. Neurosurg Quart 20:15–22. doi:10.1097/WNQ.0b013e3181ce0d13

    Article  Google Scholar 

  2. Hilibrand AS, Robbins M (2004) Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? Spine J 4:S190–S194

    Article  Google Scholar 

  3. Chang UK, Kim DH, Lee MC, Willenberg R, Kim SH, Lim J (2007) Changes in adjacent-level disc pressure and facet joint force after cervical arthroplasty compared with cervical discectomy and fusion. J Neurosurg Spine 7:33–39. doi:10.3171/SPI-07/07/033

    Article  PubMed  Google Scholar 

  4. Dmitriev AE, Cunningham BW, Hu N, Sell G, Vigna F, McAfee PC (2005) Adjacent level intradiscal pressure and segmental kinematics following a cervical total disc arthroplasty: an in vitro human cadaveric model. Spine 30:1165–1172

    Article  PubMed  Google Scholar 

  5. Galbusera F, Bellini CM, Brayda-Bruno M, Fornari M (2008) Biomechanical studies on cervical total disc arthroplasty: a literature review. Clin Biomech 23:1095–1104. doi:10.1016/j.clinbiomech.2008.06.002

    Article  Google Scholar 

  6. Chang U, Kim DH, Lee MC, Willenberg R, Kim S, Lim J (2007) Range of motion change after cervical arthroplasty with ProDisc-C and Prestige artificial discs compared with anterior cervical discectomy and fusion. J Neurosurg Spine 7:40–46

    Article  PubMed  Google Scholar 

  7. Kotani Y, Cunningham BW, Abumi K, Dmitriev AE, Ito M, Hu N, Shikinami Y, McAfee PC, Minami A (2005) Multidirectional flexibility analysis of cervical artificial disc reconstruction: in vitro human cadaveric spine model. J Neurosurg Spine 2:188–194

    Article  PubMed  Google Scholar 

  8. Lee S, Im Y, Kim K, Kim Y, Park W, Kim K (2011) Comparison of cervical spine biomechanics after fixed- and mobile-core artificial disc replacement: a finite element analysis. Spine 36:700–708

    Article  PubMed  Google Scholar 

  9. Anderson PA, Sasso RC, Rouleau JP, Carlson CS, Goffin J (2004) The Bryan Cervical Disc: wear properties and early clinical results. Spine J 4:S303–S309

    Article  Google Scholar 

  10. Wilke HJ, Drumm J, Haussler K, Mack C, Steudel W, Kettler A (2008) Biomechanical effect of different lumbar interspinous implants on flexibility and intradiscal pressure. Eur Spine J 17:1049–1056. doi:10.1007/s00586-008-0657-2

    Article  PubMed Central  PubMed  Google Scholar 

  11. Matgé G, Eif M, Herdmann J, Lowery GL (2009) Dynamic Cervical Implant (DCI™): clinical results from an international multicenter prospective study. Paradigm Spine:1–3

  12. DiAngelo DJ, Foley KT, Morrow BR, Schwab JS, Song J, German JW, Blair E (2004) In vitro biomechanics of cervical disc arthroplasty with the ProDisc-C total disc implant. Neurosurg Focus 17:E7

    PubMed  Google Scholar 

  13. Kurtz SM, Edidin AA (2006) Spine technology handbook. Elsevier Inc., Burlington

    Google Scholar 

  14. Denozière G, Ku DN (2006) Biomechanical comparison between fusion of two vertebrae and implantation of an artificial intervertebral disc. J Biomech 39:766–775

    Article  PubMed  Google Scholar 

  15. Drake RL, Vogl AW, Mitchell AWM, Tibbitts R, Richardson P (2008) Gray’s Atlas of Anatomy. Churchill livingstone Elsevier, Philadelphia

    Google Scholar 

  16. Narayan Y, Srirangam K, Frank AP (2000) Geometric and mechanical properties of human cervical spine ligaments. J Biomech Eng 122:623–629

    Google Scholar 

  17. Hong-Wan N, Ee-Chon T, Qing-Hang Z (2004) Biomechanical Effects of C2–C7 intersegmental stability due to laminectomy with unilateral and bilateral facetectomy. Spine 29:1737–1745

    Article  PubMed  Google Scholar 

  18. Jirkova L, Horak Z (2009) Analysis of influence location of intervertebral implant on the lower cervical spine loading and stability. IFMBE Proceedings 23:1724–1727

    Google Scholar 

  19. Panjabi MM, Crisco JJ, Vasavada A, Oda T, Cholewicki J, Nibu K, Shin E (2001) Mechanical properties of the human cervical spine as shown by three-dimensional load–displacement curves. Spine 26:2692–2700

    Article  CAS  PubMed  Google Scholar 

  20. Moroney SP, Schultz AB, Miller JAA, Andersson GBJ (1988) Load–displacement properties of lower cervical spine motion segments. J Biomech 21:769–779

    Article  CAS  PubMed  Google Scholar 

  21. Finn MA, Brodke DS, Daubs M, Patel A, Bachus KN (2009) Local and global subaxial cervical spine biomechanics after single-level fusion or cervical arthroplasty. Eur Spine J 18:1520–1527. doi:10.1007/s00586-009-1085-7

    Article  PubMed Central  PubMed  Google Scholar 

  22. McNally DS, Shackleford IM, Goodship AE, Mulholland RC (1996) In vivo stress measurement can predict pain on discography. Spine 21:2580–2587

    Article  CAS  PubMed  Google Scholar 

  23. Barrey C, Mosnier T, Jund J, Perrin G, Skalli W (2009) In vitro evaluation of a ball-and-socket cervical disc prosthesis with cranial geometric center. J Neurosurg Spine 11:538–546. doi:10.3171/2009.6.SPINE0949

    Article  PubMed  Google Scholar 

  24. Liu F, Cheng J, Komistek RD, Mahfouz MR, Sharma A (2007) In vivo evaluation of dynamic characteristics of the normal, fused, and disc replacement cervical spines. Spine 32:2578–2584

    Article  PubMed  Google Scholar 

  25. Kowalczyk I, Lazaro BCR, Fink M, Rabin D, Duggal N (2011) Analysis of in vivo kinematics of 3 different cervical devices: Bryan disc, ProDisc-C, and Prestige LP disc. J Neurosurg Spine 15:630–635. doi:10.3171/2011.8.SPINE11273

    Article  PubMed  Google Scholar 

  26. Duggal N, Bertagnoli R, Rabin D, Wharton N, Kowalczyk I (2011) ProDisc-C: an in vivo kinematic study. J Spinal Disord Tech 24:334–339. doi:10.1097/BSD.0b013e3181fbf8aa

    Article  PubMed  Google Scholar 

  27. Bauman JA, Jaumard NV, Guarino BB, Weisshaar CL, Lipschutz DE, Welch WC, Winkelstein BA (2012) Facet joint contact pressure is not significantly affected by ProDisc cervical disc arthroplasty in sagittal bending: a single-level cadaveric study. Spine J 12:949–959

    Article  PubMed  Google Scholar 

  28. Womack W, Leahy PD, Patel VV, Puttlitz CM (2011) Finite element modeling of kinematic and load transmission alterations due to cervical intervertebral disc replacement. Spine 36 (Phila Pa 1976):E1126–E1133. doi:10.1097/BRS.0b013e31820e3dd1

    Article  Google Scholar 

  29. Teoh SH (2000) Fatigue of biomaterials: a review. Int J Fatigue 22:825–837

    Article  CAS  Google Scholar 

  30. Goel VK, Panjabi MM, Patwardhan AG, Dooris AP, Serhan H (2006) Test protocols for evaluation of spinal implants. J Bone Joint Surg 88:103–109

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Nos. 10925208, 11120101001, 11202017, 11272273 and 81271666), the 111 Project (No. B13003), National Science & Technology Pillar Program (Nos. 2012BAI18B05, 2012BAI18B07) and The Hong Kong Polytechnic university Research Grant (No. G-UA40).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Sun or Yu Bo Fan.

Additional information

Zhong Jun Mo and Yan Bin Zhao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mo, Z.J., Zhao, Y.B., Wang, L.Z. et al. Biomechanical effects of cervical arthroplasty with U-shaped disc implant on segmental range of motion and loading of surrounding soft tissue. Eur Spine J 23, 613–621 (2014). https://doi.org/10.1007/s00586-013-3070-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-013-3070-4

Keywords

Navigation