European Spine Journal

, Volume 22, Issue 12, pp 2897–2903 | Cite as

Which factors prognosticate rotational instability following lumbar laminectomy?

  • Arno Bisschop
  • Idsart Kingma
  • Ronald L. A. W. Bleys
  • Albert J. van der Veen
  • Cornelis P. L. Paul
  • Jaap H. van Dieën
  • Barend J. van Royen
Original Article



Reduced strength and stiffness of lumbar spinal motion segments following laminectomy may lead to instability. Factors that predict shear biomechanical properties of the lumbar spine were previously published. The purpose of the present study was to predict spinal torsion biomechanical properties with and without laminectomy from a total of 21 imaging parameters.


Radiographs and MRI of ten human cadaveric lumbar spines (mean age 75.5, range 59–88 years) were obtained to quantify geometry and degeneration of the motion segments. Additionally, dual X-ray absorptiometry (DXA) scans were performed to measure bone mineral content and density. Facet-sparing lumbar laminectomy was performed either on L2 or L4. Spinal motion segments were dissected (L2–L3 and L4–L5) and tested in torsion, under 1,600 N axial compression. Torsion moment to failure (TMF), early torsion stiffness (ETS, at 20–40 % TMF) and late torsion stiffness (LTS, at 60–80 % TMF) were determined and bivariate correlations with all parameters were established. For dichotomized parameters, independent-sample t tests were used.


Univariate analyses showed that a range of geometric characteristics and disc and bone quality parameters were associated with torsion biomechanical properties of lumbar segments. Multivariate models showed that ETS, LTS and TMF could be predicted for segments without laminectomy (r 2 values 0.693, 0.610 and 0.452, respectively) and with laminectomy (r 2 values 0.952, 0.871 and 0.932, respectively), with DXA-derived measures of bone quality and quantity as the main predictors.


Vertebral bone content and geometry, i.e. intervertebral disc width, frontal area and facet joint tropism, were found to be strong predictors of ETS, LTS and TMF following laminectomy, suggesting that these variables could predict the possible development of post-operative rotational instability following lumbar laminectomy. Proposed diagnostic parameters might aid surgical decision-making when deciding upon the use of instrumentation techniques.


Torsion biomechanics Decompression Laminectomy Spinal stenosis and diagnostics 


Conflict of interest



  1. 1.
    Abel MS (1989) Transverse posterior element fractures associated with torsion. Skelet Radiol 17:556–560CrossRefGoogle Scholar
  2. 2.
    Bisschop A, Mullender MG, Kingma I, Jiya TU, van der Veen AJ, Roos JC, van Dieen JH, van Royen BJ (2012) The impact of bone mineral density and disc degeneration on shear strength and stiffness of the lumbar spine following laminectomy. Eur Spine J 21:530–536PubMedCrossRefGoogle Scholar
  3. 3.
    Bisschop A, van Dieen JH, Mullender M, Paul CPL, Jiya TU, Kingma I, van der Veen A, De Kleuver M, van Royen BJ (2013) Torsion biomechanics of the spine following lumbar laminectomy: a human cadaver study. Eur Spine J 22:1785–1793Google Scholar
  4. 4.
    Bisschop A, van Royen BJ, Mullender MG, Paul CP, Kingma I, Jiya TU, van der Veen AJ, van Dieen JH (2012) Which factors prognosticate spinal instability following lumbar laminectomy? Eur Spine J 21:2640–2648PubMedCrossRefGoogle Scholar
  5. 5.
    Boden SD, Riew KD, Yamaguchi K, Branch TP, Schellinger D, Wiesel SW (1996) Orientation of the lumbar facet joints: association with degenerative disc disease. J Bone Joint Surg Am 78:403–411PubMedGoogle Scholar
  6. 6.
    Brinckmann P, Biggemann M, Hilweg D (1989) Prediction of the compressive strength of human lumbar vertebrae. Spine (Phila Pa 1976) 14:606–610CrossRefGoogle Scholar
  7. 7.
    Farfan HF (1984) The torsional injury of the lumbar spine. Spine (Phila Pa 1976) 9:53CrossRefGoogle Scholar
  8. 8.
    Gordon SJ, Yang KH, Mayer PJ, Mace AH Jr, Kish VL, Radin EL (1991) Mechanism of disc rupture. A preliminary report. Spine (Phila Pa 1976) 16:450–456CrossRefGoogle Scholar
  9. 9.
    Griffith JF, Wang YX, Antonio GE, Choi KC, Yu A, Ahuja AT, Leung PC (2007) Modified Pfirrmann grading system for lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 32:E708–E712CrossRefGoogle Scholar
  10. 10.
    Gunzburg R, Hutton W, Fraser R (1991) Axial rotation of the lumbar spine and the effect of flexion. An in vitro and in vivo biomechanical study. Spine (Phila Pa 1976) 16:22–28CrossRefGoogle Scholar
  11. 11.
    Haher TR, O’Brien M, Felmly WT, Welin D, Perrier G, Choueka J, Devlin V, Vassiliou A, Chow G (1992) Instantaneous axis of rotation as a function of the three columns of the spine. Spine (Phila Pa 1976) 17:S149–S154CrossRefGoogle Scholar
  12. 12.
    Kettler A, Wilke HJ (2006) Review of existing grading systems for cervical or lumbar disc and facet joint degeneration. Eur Spine J 15:705–718PubMedCrossRefGoogle Scholar
  13. 13.
    Kingma I, Bosch T, Bruins L, van Dieen JH (2004) Foot positioning instruction, initial vertical load position and lifting technique: effects on low back loading. Ergonomics 47:1365–1385PubMedCrossRefGoogle Scholar
  14. 14.
    Kingma I, Faber GS, Bakker AJ, van Dieen JH (2006) Can low back loading during lifting be reduced by placing one leg beside the object to be lifted? Phys Ther 86:1091–1105PubMedGoogle Scholar
  15. 15.
    Kingma I, Staudenmann D, van Dieen JH (2007) Trunk muscle activation and associated lumbar spine joint shear forces under different levels of external forward force applied to the trunk. J Electromyogr Kinesiol 17:14–24PubMedCrossRefGoogle Scholar
  16. 16.
    Kirkaldy-Willis WH, Farfan HF (1981) Instability of the lumbar spine. Clin Orthop Relat Res 165:110–123Google Scholar
  17. 17.
    Lane NE, Nevitt MC, Genant HK, Hochberg MC (1993) Reliability of new indices of radiographic osteoarthritis of the hand and hip and lumbar disc degeneration. J Rheumatol 20:1911–1918PubMedGoogle Scholar
  18. 18.
    Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR (1988) Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 166:193–199PubMedGoogle Scholar
  19. 19.
    Pathria M, Sartoris DJ, Resnick D (1987) Osteoarthritis of the facet joints: accuracy of oblique radiographic assessment. Radiology 164:227–230PubMedGoogle Scholar
  20. 20.
    Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 26:1873–1878CrossRefGoogle Scholar
  21. 21.
    Pfirrmann CW, Resnick D (2001) Schmorl’s nodes of the thoracic and lumbar spine: radiographic–pathologic study of prevalence, characterization, and correlation with degenerative changes of 1,650 spinal levels in 100 cadavers. Radiology 219:368–374PubMedCrossRefGoogle Scholar
  22. 22.
    Quint U, Wilke HJ, Loer F, Claes L (1998) Laminectomy and functional impairment of the lumbar spine: the importance of muscle forces in flexible and rigid instrumented stabilization—a biomechanical study in vitro. Eur Spine J 7:229–238PubMedCrossRefGoogle Scholar
  23. 23.
    Renau A, Farrerons J, Yoldi B, Gil J, Proubasta I, Lalauger J (2004) Precision of bone mineral density scans at the proximal tibia in osteoarthritic subjects. J Clin Densitom 7:382–389PubMedCrossRefGoogle Scholar
  24. 24.
    van Dieen JH, van der Veen A, van Royen BJ, Kingma I (2006) Fatigue failure in shear loading of porcine lumbar spine segments. 8 31:E494–E498Google Scholar
  25. 25.
    van Laar W, Meester RJ, Smit TH, van Royen BJ (2007) A biomechanical analysis of the self-retaining pedicle hook device in posterior spinal fixation. Eur Spine J 16:1209–1214PubMedCrossRefGoogle Scholar
  26. 26.
    van Solinge GB, van der Veen AJ, van Dieen JH, Kingma I, van Royen BJ (2010) Anterior shear strength of the porcine lumbar spine after laminectomy and partial facetectomy. Eur Spine J 19:2130–2136PubMedCrossRefGoogle Scholar
  27. 27.
    Weishaupt D, Zanetti M, Boos N, Hodler J (1999) MR imaging and CT in osteoarthritis of the lumbar facet joints. Skelet Radiol 28:215–219CrossRefGoogle Scholar
  28. 28.
    Wilke HJ, Rohlmann F, Neidlinger-Wilke C, Werner K, Claes L, Kettler A (2006) Validity and interobserver agreement of a new radiographic grading system for intervertebral disc degeneration: part I. Lumbar spine. Eur Spine J 15:720–730PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Arno Bisschop
    • 1
  • Idsart Kingma
    • 2
  • Ronald L. A. W. Bleys
    • 3
  • Albert J. van der Veen
    • 4
  • Cornelis P. L. Paul
    • 1
  • Jaap H. van Dieën
    • 2
  • Barend J. van Royen
    • 1
  1. 1.Department of Orthopedic Surgery, Research Institute MOVEVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Research Institute MOVE, Faculty of Human Movement SciencesVU University AmsterdamAmsterdamThe Netherlands
  3. 3.Division of Surgical Specialties, Department of AnatomyUniversity Medical Center UtrechtUtrechtThe Netherlands
  4. 4.Department of Physics and Medical TechnologyVU University Medical CenterAmsterdamThe Netherlands

Personalised recommendations