European Spine Journal

, Volume 23, Issue 2, pp 320–327 | Cite as

Multifidus innervation and muscle assessment post-spinal surgery

  • Derek T. CawleyEmail author
  • Michael Alexander
  • Seamus Morris
Original Article



Assessment of the integrity of the multifidus muscles and corresponding nerve roots, post-open (OSS) versus minimally invasive spinal surgery (MISS) for lumbar spine fractures.


We investigated the first six patients undergoing MISS in our institution and age- and sex-matched them with 6 random patients who previously had OSS. All had a similar lumbar fracture configuration without evidence of spinal cord injury. All were assessed using ultrasound muscle quantification and electromyographic studies at a minimum of 6 months post-operatively. Mean cross-sectional area (CSA) was measured at sequential levels within and adjacent to the operative field. Concentric needle electromyography was performed at instrumented and adjacent non-instrumented levels in each patient.


Mean CSA across all lumbar multifidus muscles was 4.29 cm2 in the MISS group, 2.26 cm2 for OSS (p = 0.08). At the instrumented levels, mean CSA was 4.21 cm2 for MISS and 2.03 cm2 for OSS (p = 0.12). At non-instrumented adjacent levels, mean CSA was 4.46 cm2 in the MISS group, 2.87 cm2 for OSS (p = 0.05).

Electromyography at non-instrumented adjacent levels demonstrated nerve function within normal limits in 5/6 levels in the MISS group compared to 1/6 levels in the OSS (p = 0.03). Instrumented levels demonstrated nerve function within normal limits in 5/12 levels in the MISS group compared with 4/12 in the OSS group, including moderate–severe denervation at 5 levels in the OSS group (p = 0.15).


Posterior instrumented MISS demonstrates a significantly superior preservation of the medial branch of the posterior ramus of the spinal nerve and less muscle atrophy, particularly at adjacent levels when compared to OSS.


Minimally invasive Multifidus Spine Surgery Pedicle screw Electromyography Fracture 



Medtronic for funding of co-authors to attend conference. The results of this study were presented at Britspine 2012 and Spineweek 2012.

Conflict of interest



  1. 1.
    MacDonald DA, Moseley GL, Hodges PW (2006) The lumbar multifidus: does the evidence support clinical beliefs? Man Ther 11(4):254–263PubMedCrossRefGoogle Scholar
  2. 2.
    Macintosh J, Valencia F, Bogduk N et al (1986) The morphology of the human lumbar multifidus. Clin Biomech 1(4):196–204CrossRefGoogle Scholar
  3. 3.
    Rantanen J, Hurme M, Falck B et al (1993) The lumbar multifidus muscle five years after surgery for a lumbar intervertebral disc herniation. Spine 18:568–574PubMedCrossRefGoogle Scholar
  4. 4.
    Sihvonen T, Herno A, Paljiarvi L et al (1993) Local denervation atrophy of paraspinal muscles in postoperative failed back syndrome. Spine 18:575–581PubMedCrossRefGoogle Scholar
  5. 5.
    Gejo R, Matsui H, Kawaguchi Y et al (1999) Serial changes in trunk muscle performance after posterior lumbar surgery. Spine 24:1023–1028PubMedCrossRefGoogle Scholar
  6. 6.
    Weinstein JN, Rydevik BL, Rauschning W (1992) Anatomic and technical considerations of pedicle screw fixation. Clin Orthop Relat Res 284:34–46PubMedGoogle Scholar
  7. 7.
    Styf JR, Willen J (1998) The effects of external compression by three different retractors on pressure in the erector spine muscles during and after posterior lumbar spine surgery in humans. Spine 23:354–358PubMedCrossRefGoogle Scholar
  8. 8.
    Nagayama R, Nakamura H, Yamano Y et al (2000) An experimental study of the effects of nerve root retraction on the posterior ramus. Spine (Phila Pa 1976) 25(4):418–424CrossRefGoogle Scholar
  9. 9.
    Kim KT, Lee SH, Suk KS et al (2006) The quantitative analysis of tissue injury markers after mini-open lumbar fusion. Spine (Phila Pa 1976) 31(6):712–716CrossRefGoogle Scholar
  10. 10.
    Rahman M, Summers LE, Richter B et al (2008) Comparison of techniques for decompressive lumbar laminectomy: the minimally invasive versus the “classic” open approach. Minim Invasive Neurosurg 51(2):100–105PubMedCrossRefGoogle Scholar
  11. 11.
    McGirt MJ, Parker SL, Lerner J et al (2011) Comparative analysis of perioperative surgical site infection after minimally invasive versus open posterior/transforaminal lumbar interbody fusion: analysis of hospital billing and discharge data from 5170 patients. J Neurosurg Spine 14(6):771–778PubMedCrossRefGoogle Scholar
  12. 12.
    Hides JA, Cooper DH, Stokes MJ (1992) Diagnostic ultrasound imaging for measurement of the lumbar multifidus muscle in normal young adults. Physiother Theory Pract 8(1):19–26Google Scholar
  13. 13.
    Haig AJ, Moffroid M, Henry S et al (1991) A technique for needle localization in paraspinal muscles with cadaveric confirmation. Muscle Nerve 14(6):521–526PubMedCrossRefGoogle Scholar
  14. 14.
    Hides J, Gilmore C, Stanton W et al (2008) Multifidus size and symmetry among chronic LBP and healthy asymptomatic subjects. Man Ther 13(1):43–49PubMedCrossRefGoogle Scholar
  15. 15.
    Payer M (2011) “Minimally invasive” lumbar spine surgery: a critical review. Acta Neurochir (Wien) 153(7):1455–1459CrossRefGoogle Scholar
  16. 16.
    Foley KT, Lefkowitz MA (2002) Advances in minimally invasive spine surgery. Clin Neurosurg 49:499–517PubMedGoogle Scholar
  17. 17.
    Mobbs RJ, Sivabalan P, Li J (2011) Technique, challenges and indications for percutaneous pedicle screw fixation. J Clin Neurosci 18(6):741–749PubMedCrossRefGoogle Scholar
  18. 18.
    Koppenhaver SL, Hebert JJ, Fritz JM et al (2009) Reliability of rehabilitative ultrasound imaging of the transversus abdominis and lumbar multifidus muscles. Arch Phys Med Rehabil 90(1):87–94PubMedGoogle Scholar
  19. 19.
    Hebert JJ, Koppenhaver SL, Parent EC et al (2009) A systematic review of the reliability of rehabilitative ultrasound imaging for the quantitative assessment of the abdominal and lumbar trunk muscles. Spine (Phila Pa 1976) 34(23):E848–E856CrossRefGoogle Scholar
  20. 20.
    Wallwork TL, Hides JA, Stanton WR (2007) Intrarater and interrater reliability of assessment of lumbar multifidus muscle thickness using rehabilitative ultrasound imaging. J Orthop Sports Phys Ther 37(10):608–612PubMedCrossRefGoogle Scholar
  21. 21.
    Haig AJ, LeBreck DB, Powley SG (1995) Paraspinal mapping. Quantified needle electromyography of the paraspinal muscles in persons without low back pain. Spine (Phila Pa 1976) 20(6):715–721CrossRefGoogle Scholar
  22. 22.
    Haig AJ, Talley C, Grobler LJ et al (1993) Paraspinal mapping: quantified needle electromyography in lumbar radiculopathy. Muscle Nerve 16(5):477–484PubMedCrossRefGoogle Scholar
  23. 23.
    Regev GJ, Lee YP, Taylor WR et al (2009) Nerve injury to the posterior rami medial branch during the insertion of pedicle screws: comparison of mini-open versus percutaneous pedicle screw insertion techniques. Spine (Phila Pa 1976) 34(11):1239–1242CrossRefGoogle Scholar
  24. 24.
    Kim DY, Lee SH, Chung SK et al (2005) Comparison of multifidus muscle atrophy and trunk extension muscle strength: percutaneous versus open pedicle screw fixation. Spine (Phila Pa 1976) 30(1):123–129CrossRefGoogle Scholar
  25. 25.
    Li C, Xu HZ, Wang XY et al (2007) Comparison of the paraspinal muscle change of percutaneous and open pedicle screw fixation in the treatment for thoracolumbar fractures. Zhonghua Wai Ke Za Zhi 45(14):972–975 (In Chinese)PubMedGoogle Scholar
  26. 26.
    Kawaguchi Y, Matsui H, Tsuji H (1996) Back muscle injury after posterior lumbar spine surgery. A histologic and enzymatic analysis. Spine (Phila Pa 1976) 21(8):941–944CrossRefGoogle Scholar
  27. 27.
    Datta G, McGregor A, Medhi-Zadeh S et al (2010) The impact of intermittent retraction on paraspinal muscle function during lumbar surgery. Spine (Phila Pa 1976) 35(20):E1050–E1057CrossRefGoogle Scholar
  28. 28.
    Mannion AF, Denzler R, Dvorak J et al (2007) A randomised controlled trial of post-operative rehabilitation after surgical decompression of the lumbar spine. Eur Spine J 16(8):1101–1117PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Mannion AF, Müntener M, Taimela S et al (2001) Comparison of three active therapies for chronic low back pain: results of a randomized clinical trial with one-year follow-up. Rheumatology 40(7):772–778 (Oxford)PubMedCrossRefGoogle Scholar
  30. 30.
    Sanderson PL, Fraser RD, Hall DJ et al (1999) Short segment fixation of thoracolumbar burst fractures without fusion. Eur Spine J 8(6):495–500PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Dai LY, Jiang LS, Jiang SD (2009) Posterior short-segment fixation with or without fusion for thoracolumbar burst fractures. a five to seven-year prospective randomized study. J Bone Joint Surg Am 91(5):1033–1041PubMedCrossRefGoogle Scholar
  32. 32.
    Hyun SJ, Kim YB, Kim YS et al (2007) Postoperative changes in paraspinal muscle volume: comparison between paramedian interfascial and midline approaches for lumbar fusion. J Korean Med Sci 22(4):646–651PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Stevens KJ, Spenciner DB, Griffiths KL et al (2006) Comparison of minimally invasive and conventional open posterolateral lumbar fusion using magnetic resonance imaging and retraction pressure studies. J Spinal Disord Tech 19(2):77–86PubMedCrossRefGoogle Scholar
  34. 34.
    Wood K, Buttermann G, Mehbod A et al (2003) Operative compared with nonoperative treatment of a thoracolumbar burst fracture without neurological deficit. A prospective, randomized study. J Bone Joint Surg Am 85(5):773–781PubMedGoogle Scholar
  35. 35.
    McCormack T, KaraiKovic E, Gaines W (1994) The load sharing classification of spine fracture. Spine 19(15):1741–1744PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Derek T. Cawley
    • 1
    Email author
  • Michael Alexander
    • 2
  • Seamus Morris
    • 1
  1. 1.Department of Trauma and Orthopedic SurgeryAdelaide and Meath HospitalDublin 24Ireland
  2. 2.Department of NeurophysiologyAdelaide and Meath HospitalDublin 24Ireland

Personalised recommendations