European Spine Journal

, Volume 22, Issue 12, pp 2869–2875 | Cite as

Fusion and subsidence rate of stand alone anterior lumbar interbody fusion using PEEK cage with recombinant human bone morphogenetic protein-2

  • Eyal Behrbalk
  • Ofir Uri
  • Ruth M. Parks
  • Rachel Musson
  • Reuben Chee Cheong Soh
  • Bronek Maximilian Boszczyk
Original Article



Anterior lumbar interbody fusion (ALIF) is an established treatment for structural instability associated with symptomatic disk degeneration (SDD). Stand-alone ALIF offers many advantages, however, it may increase the risk of non-union. Recombinant human bone morphogenetic protein-2 (BMP-2) may enhance fusion rate but is associated with postoperative complication. The optimal dose of BMP-2 remains unclear. This study assessed the fusion and subsidence rates of stand-alone ALIF using the SynFix-LR interbody cage with 6 ml/level of BMP-2.


Thirty-two ALIF procedures were performed by a single surgeon in 25 patients. Twenty-five procedures were performed for SDD without spondylolisthesis (SDD group) and seven procedures were performed for SDD with grade-I olisthesis (SDD-olisthesis group). Patients were followed-up for a mean of 17 ± 6 months.


Solid fusion was achieved in 29 cases (90.6 %) within 6 months postoperatively. Five cases of implant subsidence were observed (16 %). Four of these occurred in the SDD-olisthesis group and one occurred in the SDD group (57 % vs. 4 % respectively; p = 0.004). Three cases of subsidence failed to fuse and required revision. The body mass index of patients with olisthesis who developed subsidence was higher than those who did not develop subsidence (29 ± 2.6 vs. 22 ± 6.5 respectively; p = 0.04). No BMP-2 related complications occurred.


The overall fusion rate of stand-alone ALIF using the SynFix-LR system with BMP-2 was 90.6 %, comparable with other published series. No BMP-2 related complication occurred at a dose of 6 mg/level. Degenerative spondylolisthesis and obesity seemed to increase the rate of implant subsidence, and thus we believe that adding posterior fusion for these cases should be considered.


ALIF Spine fusion BMP-2 PEEK cage Subsidence 



I hereby declare that no funding or grants were given to conduct this study.

Conflict of interest



  1. 1.
    Czerwein JK Jr et al (2011) Complications of anterior lumbar surgery. J Am Acad Orthop Surg 19(5):251–258PubMedGoogle Scholar
  2. 2.
    Quraishi NA et al (2013) Access related complications in anterior lumbar surgery performed by spinal surgeons. Eur Spine J 22(Suppl 1):16–20CrossRefGoogle Scholar
  3. 3.
    Burkus JK et al (2002) Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech 15(5):337–349PubMedCrossRefGoogle Scholar
  4. 4.
    Burkus JK et al (2003) Is INFUSE bone graft superior to autograft bone? An integrated analysis of clinical trials using the LT-CAGE lumbar tapered fusion device. J Spinal Disord Tech 16(2):113–122PubMedCrossRefGoogle Scholar
  5. 5.
    Flynn JC, Hoque MA (1979) Anterior fusion of the lumbar spine. End-result study with long-term follow-up. J Bone Joint Surg Am 61(8):1143–1150PubMedGoogle Scholar
  6. 6.
    Stauffer RN, Coventry MB (1972) Anterior interbody lumbar spine fusion. Analysis of Mayo Clinic series. J Bone Joint Surg Am 54(4):756–768PubMedGoogle Scholar
  7. 7.
    Strube P et al (2012) Stand-alone anterior versus anteroposterior lumbar interbody single-level fusion after a mean follow-up of 41 months. J Spinal Disord Tech 25(7):362–369PubMedCrossRefGoogle Scholar
  8. 8.
    Pellise F et al (2002) Low fusion rate after L5-S1 laparoscopic anterior lumbar interbody fusion using twin stand-alone carbon fiber cages. Spine (Phila Pa 1976) 27(15):1665–1669CrossRefGoogle Scholar
  9. 9.
    Burkus JK et al (2009) Six-year outcomes of anterior lumbar interbody arthrodesis with use of interbody fusion cages and recombinant human bone morphogenetic protein-2. J Bone Joint Surg Am 91(5):1181–1189PubMedCrossRefGoogle Scholar
  10. 10.
    Burkus JK, Dorchak JD, Sanders DL (2003) Radiographic assessment of interbody fusion using recombinant human bone morphogenetic protein type 2. Spine (Phila Pa 1976) 28(4):372–377Google Scholar
  11. 11.
    Boden SD et al (2000) The use of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: a preliminary report. Spine (Phila Pa 1976) 25(3):376–381CrossRefGoogle Scholar
  12. 12.
    Burkus JK et al (2002) Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. Spine (Phila Pa 1976) 27(21):2396–2408CrossRefGoogle Scholar
  13. 13.
    Schimmel JJ et al (2012) PEEK Cages in Lumbar Fusion: Mid-term Clinical Outcome and Radiological Fusion. J Spinal Disord Tech. doi: 10.1097/BSD.0b013e31826eaf74
  14. 14.
    Spruit M et al (2005) The in vitro stabilising effect of polyetheretherketone cages versus a titanium cage of similar design for anterior lumbar interbody fusion. Eur Spine J 14(8):752–758PubMedCrossRefGoogle Scholar
  15. 15.
    Carragee EJ, Hurwitz EL, Weiner BK (2011) A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J 11(6):471–491PubMedCrossRefGoogle Scholar
  16. 16.
    Galbusera F, Schmidt H, Wilke H-J (2012) Lumbar interbody fusion: a parametric investigation of a novel cage design with and without posterior instrumentation. Eur Spine J 21(3):455–462PubMedCrossRefGoogle Scholar
  17. 17.
    Blumenthal SL, Gill K (1993) Can lumbar spine radiographs accurately determine fusion in postoperative patients? Correlation of routine radiographs with a second surgical look at lumbar fusions. Spine (Phila Pa 1976) 18(9):1186–1189CrossRefGoogle Scholar
  18. 18.
    McAfee PC et al (2001) Symposium: a critical discrepancy-a criteria of successful arthrodesis following interbody spinal fusions. Spine (Phila Pa 1976) 26(3):320–334CrossRefGoogle Scholar
  19. 19.
    Modic MT et al (1988) Imaging of degenerative disk disease. Radiology 168(1):177–186PubMedGoogle Scholar
  20. 20.
    Modic MT et al (1988) Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 166(1 Pt 1):193–199PubMedGoogle Scholar
  21. 21.
    Manchikanti L et al (2009) Systematic review of lumbar discography as a diagnostic test for chronic low back pain. Pain Phys 12(3):541–559Google Scholar
  22. 22.
    Konig MA et al (2011) The routine intra-operative use of pulse oximetry for monitoring can prevent severe thromboembolic complications in anterior surgery. Eur Spine J 20(12):2097–2102PubMedCrossRefGoogle Scholar
  23. 23.
    Brau SA (2011) Expert’s comment concerning Grand Rounds case entitled “The routine intra-operative use of pulse oximetry for monitoring can prevent severe thromboembolic complications in anterior surgery” (by M.A. Konig, Y. Leung, S. Jurgens, S. MacSweeney and B.M. Boszczyk). Eur Spine J 20(12):2103–2104PubMedCrossRefGoogle Scholar
  24. 24.
    Lakshmanan P et al (2012) Sagittal endplate morphology of the lower lumbar spine. Eur Spine J 21(Suppl 2):S160–S164PubMedCrossRefGoogle Scholar
  25. 25.
    Brantigan JW et al (2000) Lumbar interbody fusion using the Brantigan I/F cage for posterior lumbar interbody fusion and the variable pedicle screw placement system: two-year results from a Food and Drug Administration investigational device exemption clinical trial. Spine (Phila Pa 1976) 25(11):1437–1446CrossRefGoogle Scholar
  26. 26.
    Li Y, Hresko MT (2012) Radiographic analysis of spondylolisthesis and sagittal spinopelvic deformity. J Am Acad Orthop Surg 20(4):194–205PubMedCrossRefGoogle Scholar
  27. 27.
    Williams AL, Gornet MF, Burkus JK (2005) CT evaluation of lumbar interbody fusion: current concepts. AJNR Am J Neuroradiol 26(8):2057–2066PubMedGoogle Scholar
  28. 28.
    Kahanovitz N, Viola K, Gallagher M (1989) Long-term strength assessment of postoperative diskectomy patients. Spine (Phila Pa 1976) 14(4):402–403CrossRefGoogle Scholar
  29. 29.
    Beimborn DS, Morrissey MC (1988) A review of the literature related to trunk muscle performance. Spine (Phila Pa 1976) 13(6):655–660Google Scholar
  30. 30.
    Penta M, Sandhu A, Fraser RD (1995) Magnetic resonance imaging assessment of disc degeneration 10 years after anterior lumbar interbody fusion. Spine (Phila Pa 1976) 20(6):743–747CrossRefGoogle Scholar
  31. 31.
    Glassman SD et al (2011) Complications with recombinant human bone morphogenic protein-2 in posterolateral spine fusion: a consecutive series of 1037 cases. Spine (Phila Pa 1976) 36(22):1849–1854CrossRefGoogle Scholar
  32. 32.
    Valdes MA et al (2009) Recombinant bone morphogenic protein-2 in orthopaedic surgery: a review. Arch Orthop Trauma Surg 129(12):1651–1657PubMedCrossRefGoogle Scholar
  33. 33.
    Vaidya R et al (2007) Interbody fusion with allograft and rhBMP-2 leads to consistent fusion but early subsidence. J Bone Joint Surg Br 89(3):342–345PubMedGoogle Scholar
  34. 34.
    Cain CM et al (2005) A new stand-alone anterior lumbar interbody fusion device: biomechanical comparison with established fixation techniques. Spine (Phila Pa 1976) 30(23):2631–2636CrossRefGoogle Scholar
  35. 35.
    Schleicher P et al (2008) Biomechanical comparison of two different concepts for stand alone anterior lumbar interbody fusion. Eur Spine J 17(12):1757–1765PubMedCrossRefGoogle Scholar
  36. 36.
    Mroz TE et al (2010) Complications related to osteobiologics use in spine surgery: a systematic review. Spine 35(9S):S86–S104PubMedCrossRefGoogle Scholar
  37. 37.
    Rowan FE, O’Malley N, Poynton A (2012) RhBMP-2 use in lumbar fusion surgery is associated with transient immediate post-operative leg pain. Eur Spine J 21(7):1331–1337PubMedCrossRefGoogle Scholar
  38. 38.
    Tepper G et al (2012) Quantitative assessment of retrograde ejaculation using semen analysis, comparison to a standardized qualitative questionnaire and investigating the impact of rhBMP-2. Spine J 12(9):8CrossRefGoogle Scholar
  39. 39.
    Majid K, Fischgrund JS (2008) Degenerative lumbar spondylolisthesis: trends in management. J Am Acad Orthop Surg 16(4):208–215PubMedGoogle Scholar
  40. 40.
    Hasegawa K et al (2001) An experimental study on the interface strength between titanium mesh cage and vertebra in reference to vertebral bone mineral density. Spine (Phila Pa 1976) 26(8):957–963CrossRefGoogle Scholar
  41. 41.
    Okuyama K et al (2001) Influence of bone mineral density on pedicle screw fixation: a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients. Spine J 1(6):402–407PubMedCrossRefGoogle Scholar
  42. 42.
    Liuke M et al (2005) Disc degeneration of the lumbar spine in relation to overweight. Int J Obes (Lond) 29(8):903–908CrossRefGoogle Scholar
  43. 43.
    Schuller S, Charles YP, Steib JP (2011) Sagittal spinopelvic alignment and body mass index in patients with degenerative spondylolisthesis. Eur Spine J 20(5):713–719PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Eyal Behrbalk
    • 1
  • Ofir Uri
    • 2
  • Ruth M. Parks
    • 1
  • Rachel Musson
    • 3
  • Reuben Chee Cheong Soh
    • 1
  • Bronek Maximilian Boszczyk
    • 1
  1. 1.The Spine UnitQueen’s Medical CentreNottinghamUK
  2. 2.Royal National Orthopaedic Hospital NHS Trust Brockley HillMiddlesexUK
  3. 3.The Radiology DepartmentQueen’s Medical CentreNottinghamUK

Personalised recommendations