European Spine Journal

, Volume 22, Issue 11, pp 2449–2455 | Cite as

3D analysis of brace treatment in idiopathic scoliosis

  • Aurélien CourvoisierEmail author
  • Xavier Drevelle
  • Raphael Vialle
  • Jean Dubousset
  • Wafa Skalli
Original Article



We have evaluated the effect of bracing in scoliosis on coronal alignment in a cohort of patients. Current literature has not described the specific effect of bracing on the 3D shape of the scoliotic curves. The purpose of this study was to analyze the variability of the 3D effect of bracing on idiopathic scoliosis.

Materials and methods

The spines of 30 patients with adolescent idiopathic scoliosis were reconstructed using biplanar stereoradiography with and without the brace. The Cobb angle, sagittal and pelvic parameters and transverse plane parameters were calculated. The variability and the mean values of each parameter, with and without a brace, were analyzed and compared using a student t test.


The Cobb angle improved in 50 % of patients but remained unchanged in 50 % cases. In 90 % of the cases lordosis was decreased. The thoracic kyphosis was decreased in 26 % cases, unchanged in 57 % of cases and increased in 17 % cases. The AVR was improved (>5°) in 26 % cases, worsened in 23 % and unchanged in 50 %. Only the differences of Cobb angle and the lordosis were statistically significant.


Global statistics of this study concur with the literature. The Cobb angle was significantly improved. It also showed a significant hypolordotic effect. However, the results showed a high variability of the brace treatment effect in almost every parameter. Analysis of this variability by means of 3D reconstructions instead of global statistics should help characterize the mechanisms of correction of brace treatment.


Scoliosis Brace 3D Variability Stereoradiography 


Conflict of interest



  1. 1.
  2. 2.
    Zeh A, Planert M, Klima S, Hein W, Wohlrab D (2008) The flexible Triac-Brace for conservative treatment of idiopathic scoliosis. An alternative treatment option? Acta Orthop Belg 74(4):512–521PubMedGoogle Scholar
  3. 3.
    Schmitz A, Konig R, Kandyba J, Pennekamp P, Schmitt O, Jaeger UE (2005) Visualisation of the brace effect on the spinal profile in idiopathic scoliosis. Eur Spine J 14(2):138–143. doi: 10.1007/s00586-004-0788-z PubMedCrossRefGoogle Scholar
  4. 4.
    Spoonamore MJ, Dolan LA, Weinstein SL (2004) Use of the Rosenberger brace in the treatment of progressive adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 29(13):1458–1464 pii: 00007632-200407010-00015CrossRefGoogle Scholar
  5. 5.
    Nachemson AL, Peterson LE (1995) Effectiveness of treatment with a brace in girls who have adolescent idiopathic scoliosis. A prospective, controlled study based on data from the Brace Study of the Scoliosis Research Society. J Bone Joint Surg Am 77(6):815–822PubMedGoogle Scholar
  6. 6.
    Wong MS, Cheng CY, Ng BK, Lam TP, Sin SW, Lee-Shum LF, Chow HK, Tam YP (2008) The effect of rigid versus flexible spinal orthosis on the gait pattern of patients with adolescent idiopathic scoliosis. Gait Posture 27(2):189–195. doi: 10.1016/j.gaitpost.2007.03.007 PubMedCrossRefGoogle Scholar
  7. 7.
    Lonstein JE, Winter RB (1994) The Milwaukee brace for the treatment of adolescent idiopathic scoliosis. A review of one thousand and twenty patients. J Bone Joint Surg Am 76(8):1207–1221PubMedGoogle Scholar
  8. 8.
    Negrini S, Minozzi S, Bettany-Saltikov J, Zaina F, Chockalingam N, Grivas TB, Kotwicki T, Maruyama T, Romano M, Vasiliadis ES (2010) Braces for idiopathic scoliosis in adolescents. Cochrane Database Syst Rev 1:CD006850. doi: 10.1002/14651858.CD006850.pub2 PubMedGoogle Scholar
  9. 9.
    Duval-Beaupere G, Lamireau T (1985) Scoliosis at less than 30 degrees. Properties of the evolutivity (risk of progression). Spine (Phila Pa 1976) 10(5):421–424CrossRefGoogle Scholar
  10. 10.
    Pomero V, Mitton D, Laporte S, de Guise JA, Skalli W (2004) Fast accurate stereoradiographic 3D-reconstruction of the spine using a combined geometric and statistic model. Clin Biomech (Bristol, Avon) 19(3):240–247. doi: 10.1016/j.clinbiomech.2003.11.014 CrossRefGoogle Scholar
  11. 11.
    Humbert L, De Guise JA, Aubert B, Godbout B, Skalli W (2009) 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys 31(6):681–687. doi: 10.1016/j.medengphy.2009.01.003 PubMedCrossRefGoogle Scholar
  12. 12.
    Gille O, Champain N, Benchikh-El-Fegoun A, Vital JM, Skalli W (2007) Reliability of 3D reconstruction of the spine of mild scoliotic patients. Spine (Phila Pa 1976) 32(5):568–573. doi: 10.1097/01.brs.0000256866.25747.b3 CrossRefGoogle Scholar
  13. 13.
    Humbert L, Carlioz H, Baudoin A, Skalli W, Mitton D (2008) 3D Evaluation of the acetabular coverage assessed by biplanar X-rays or single anteroposterior X-ray compared with CT-scan. Comput Methods Biomech Biomed Engin 11(3):257–262. doi: 10.1080/10255840701760423 PubMedCrossRefGoogle Scholar
  14. 14.
    Dubousset J, Charpak G, Skalli W, Kalifa G, Lazennec JY (2007) EOS stereo-radiography system: whole-body simultaneous anteroposterior and lateral radiographs with very low radiation dose. Rev Chir Orthop Reparatrice Appar Mot 93(6 Suppl):141–143 pii: MDOI-RCO-10-2007-93-S6-0035-1040-101019-200520011PubMedCrossRefGoogle Scholar
  15. 15.
    Courvoisier A, Drevelle X, Dubousset J, Skalli W (2013) Transverse plane 3D analysis of mild scoliosis. Eur Spine J. doi: 10.1007/s00586-013-2862-x
  16. 16.
    Perdriolle R, Vidal J (1981) A study of scoliotic curve. The importance of extension and vertebral rotation (author’s transl). Rev Chir Orthop Reparatrice Appar Mot 67(1):25–34PubMedGoogle Scholar
  17. 17.
    Steib JP, Dumas R, Mitton D, Skalli W (2004) Surgical correction of scoliosis by in situ contouring: a detorsion analysis. Spine (Phila Pa 1976) 29(2):193–199. doi: 10.1097/01.BRS.0000107233.99835.A4 CrossRefGoogle Scholar
  18. 18.
    Chase AP, Bader DL, Houghton GR (1989) The biomechanical effectiveness of the Boston brace in the management of adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 14(6):636–642CrossRefGoogle Scholar
  19. 19.
    Skalli W, Zeller RD, Miladi L, Bourcereau G, Savidan M, Lavaste F, Dubousset J (2006) Importance of pelvic compensation in posture and motion after posterior spinal fusion using CD instrumentation for idiopathic scoliosis. Spine (Phila Pa 1976) 31(12):E359–E366. doi: 10.1097/01.brs.0000219402.01636.87 CrossRefGoogle Scholar
  20. 20.
    Aubin CE, Dansereau J, de Guise JA, Labelle H (1997) Rib cage-spine coupling patterns involved in brace treatment of adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 22(6):629–635CrossRefGoogle Scholar
  21. 21.
    Labelle H, Dansereau J, Bellefleur C, Poitras B (1996) Three-dimensional effect of the Boston brace on the thoracic spine and rib cage. Spine (Phila Pa 1976) 21(1):59–64CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Aurélien Courvoisier
    • 1
    • 2
    Email author
  • Xavier Drevelle
    • 1
  • Raphael Vialle
    • 3
  • Jean Dubousset
    • 1
  • Wafa Skalli
    • 1
  1. 1.Laboratoire de Biomécanique, Arts et Métiers, ParisTech.ParisFrance
  2. 2.Pediatric Orthopedic Department, Grenoble University HospitalJoseph Fourier UniversityGrenoble cedex 9France
  3. 3.Pediatric Orthopedic Department, Trousseau HospitalParis 6 UniversityParisFrance

Personalised recommendations